Thrifty World Models for Applying Machine Learning in the Design of Complex Biosocial–Technical Systems

Guardado en:
Detalles Bibliográficos
Publicado en:Machine Learning and Knowledge Extraction vol. 7, no. 3 (2025), p. 83-98
Autor principal: Fox, Stephen
Otros Autores: Fortes, Rey Vitor
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254583161
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7030083  |2 doi 
035 |a 3254583161 
045 2 |b d20250701  |b d20250930 
100 1 |a Fox, Stephen  |u VTT Technical Research Centre of Finland, 02150 Espoo, Finland 
245 1 |a Thrifty World Models for Applying Machine Learning in the Design of Complex Biosocial–Technical Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Interactions between human behavior, legal regulations, and monitoring technology in road traffic systems provide an everyday example of complex biosocial–technical systems. In this paper, a study is reported that investigated the potential for a thrifty world model to predict consequences from choices about road traffic system design. Colloquially, the term thrifty means economical. In physics, the term thrifty is related to the principle of least action. Predictions were made with algebraic machine learning, which combines predefined embeddings with ongoing learning from data. The thrifty world model comprises three categories that encompass a total of only eight system design choice options. Results indicate that the thrifty world model is sufficient to encompass biosocial–technical complexity in predictions of where and when it is most likely that accidents will occur. Overall, it is argued that thrifty world models can provide a practical alternative to large photo-realistic world models, which can contribute to explainable artificial intelligence (AI) and to frugal AI. 
653 |a Machine learning 
653 |a Behavior 
653 |a Physics 
653 |a Roads & highways 
653 |a Systems design 
653 |a Traffic accidents & safety 
653 |a Automobile safety 
653 |a Speed limits 
653 |a Local government 
653 |a Complexity 
653 |a Ethics 
653 |a Principle of least action 
653 |a Explainable artificial intelligence 
700 1 |a Fortes, Rey Vitor  |u DFKI German Research Center for Artificial Intelligence, 67663 Kaiserslautern, Germany; vitor.fortes_rey@dfki.de 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 3 (2025), p. 83-98 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254583161/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254583161/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254583161/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch