A Comparison Between Unimodal and Multimodal Segmentation Models for Deep Brain Structures from T1- and T2-Weighted MRI

Guardado en:
Bibliografiske detaljer
Udgivet i:Machine Learning and Knowledge Extraction vol. 7, no. 3 (2025), p. 84-108
Hovedforfatter: Altini Nicola
Andre forfattere: Lasaracina Erica, Galeone Francesca, Prunella Michela, Suglia Vladimiro, Carnimeo Leonarda, Triggiani Vito, Ranieri Daniele, Brunetti Gioacchino, Bevilacqua Vitoantonio
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3254583170
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7030084  |2 doi 
035 |a 3254583170 
045 2 |b d20250701  |b d20250930 
100 1 |a Altini Nicola  |u Department of Electrical and Information Engineering, Polytechnic University of Bari, Via Giuseppe Re David 4, 70126 Bari, Italy; nicola.altini@poliba.it (N.A.); e.lasaracina@studenti.poliba.it (E.L.); f.galeone2@studenti.poliba.it (F.G.); m.prunella@phd.poliba.it (M.P.); vladimiro.suglia@poliba.it (V.S.); leonarda.carnimeo@poliba.it (L.C.) 
245 1 |a A Comparison Between Unimodal and Multimodal Segmentation Models for Deep Brain Structures from T1- and T2-Weighted MRI 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate segmentation of deep brain structures is critical for preoperative planning in such neurosurgical procedures as Deep Brain Stimulation (DBS). Previous research has showcased successful pipelines for segmentation from T1-weighted (T1w) Magnetic Resonance Imaging (MRI) data. Nevertheless, the role of T2-weighted (T2w) MRI data has been underexploited so far. This study proposes and evaluates a fully automated deep learning pipeline based on nnU-Net for the segmentation of eight clinically relevant deep brain structures. A heterogeneous dataset has been prepared by gathering 325 paired T1w and T2w MRI scans from eight publicly available sources, which have been annotated by means of an atlas-based registration approach. Three 3D nnU-Net models—unimodal T1w, unimodal T2w, and multimodal (encompassing both T1w and T2w)—have been trained and compared by using 5-fold cross-validation and a separate test set. The outcomes prove that the multimodal model consistently outperforms the T2w unimodal model and achieves comparable performance with the T1w unimodal model. On our dataset, all proposed models significantly exceed the performance of the state-of-the-art DBSegment tool. These findings underscore the value of multimodal MRI in enhancing deep brain segmentation and offer a robust framework for accurate delineation of subcortical targets in both research and clinical settings. 
610 4 |a University of North Carolina 
653 |a Datasets 
653 |a Neuroimaging 
653 |a Alzheimer's disease 
653 |a Deep learning 
653 |a Image segmentation 
653 |a Brain research 
653 |a Magnetic resonance imaging 
653 |a Brain 
653 |a Data collection 
653 |a Automation 
653 |a Medical imaging 
653 |a Longitudinal studies 
653 |a Movement disorders 
653 |a Parkinson's disease 
700 1 |a Lasaracina Erica  |u Department of Electrical and Information Engineering, Polytechnic University of Bari, Via Giuseppe Re David 4, 70126 Bari, Italy; nicola.altini@poliba.it (N.A.); e.lasaracina@studenti.poliba.it (E.L.); f.galeone2@studenti.poliba.it (F.G.); m.prunella@phd.poliba.it (M.P.); vladimiro.suglia@poliba.it (V.S.); leonarda.carnimeo@poliba.it (L.C.) 
700 1 |a Galeone Francesca  |u Department of Electrical and Information Engineering, Polytechnic University of Bari, Via Giuseppe Re David 4, 70126 Bari, Italy; nicola.altini@poliba.it (N.A.); e.lasaracina@studenti.poliba.it (E.L.); f.galeone2@studenti.poliba.it (F.G.); m.prunella@phd.poliba.it (M.P.); vladimiro.suglia@poliba.it (V.S.); leonarda.carnimeo@poliba.it (L.C.) 
700 1 |a Prunella Michela  |u Department of Electrical and Information Engineering, Polytechnic University of Bari, Via Giuseppe Re David 4, 70126 Bari, Italy; nicola.altini@poliba.it (N.A.); e.lasaracina@studenti.poliba.it (E.L.); f.galeone2@studenti.poliba.it (F.G.); m.prunella@phd.poliba.it (M.P.); vladimiro.suglia@poliba.it (V.S.); leonarda.carnimeo@poliba.it (L.C.) 
700 1 |a Suglia Vladimiro  |u Department of Electrical and Information Engineering, Polytechnic University of Bari, Via Giuseppe Re David 4, 70126 Bari, Italy; nicola.altini@poliba.it (N.A.); e.lasaracina@studenti.poliba.it (E.L.); f.galeone2@studenti.poliba.it (F.G.); m.prunella@phd.poliba.it (M.P.); vladimiro.suglia@poliba.it (V.S.); leonarda.carnimeo@poliba.it (L.C.) 
700 1 |a Carnimeo Leonarda  |u Department of Electrical and Information Engineering, Polytechnic University of Bari, Via Giuseppe Re David 4, 70126 Bari, Italy; nicola.altini@poliba.it (N.A.); e.lasaracina@studenti.poliba.it (E.L.); f.galeone2@studenti.poliba.it (F.G.); m.prunella@phd.poliba.it (M.P.); vladimiro.suglia@poliba.it (V.S.); leonarda.carnimeo@poliba.it (L.C.) 
700 1 |a Triggiani Vito  |u Masmec Biomed SpA, Via delle Violette 14, 70026 Bari, Italy; daniele.ranieri@masmec.com (D.R.); gioacchino.brunetti@masmecbiomed.com (G.B.) 
700 1 |a Ranieri Daniele  |u Masmec Biomed SpA, Via delle Violette 14, 70026 Bari, Italy; daniele.ranieri@masmec.com (D.R.); gioacchino.brunetti@masmecbiomed.com (G.B.) 
700 1 |a Brunetti Gioacchino  |u Masmec Biomed SpA, Via delle Violette 14, 70026 Bari, Italy; daniele.ranieri@masmec.com (D.R.); gioacchino.brunetti@masmecbiomed.com (G.B.) 
700 1 |a Bevilacqua Vitoantonio  |u Department of Electrical and Information Engineering, Polytechnic University of Bari, Via Giuseppe Re David 4, 70126 Bari, Italy; nicola.altini@poliba.it (N.A.); e.lasaracina@studenti.poliba.it (E.L.); f.galeone2@studenti.poliba.it (F.G.); m.prunella@phd.poliba.it (M.P.); vladimiro.suglia@poliba.it (V.S.); leonarda.carnimeo@poliba.it (L.C.) 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 3 (2025), p. 84-108 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254583170/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254583170/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254583170/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch