Investigation on Strain-Forming Limits and Manufacturing Optimization of a Single Deep-Drawing Process Concerning 304 Stainless Steel’s Thin Sheet

Guardado en:
Detalles Bibliográficos
Publicado en:Metals vol. 15, no. 9 (2025), p. 1008-1031
Autor principal: Li, Yajie
Otros Autores: Xu Jianguang, Luan Baifeng
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254604430
003 UK-CbPIL
022 |a 2075-4701 
024 7 |a 10.3390/met15091008  |2 doi 
035 |a 3254604430 
045 2 |b d20250101  |b d20251231 
084 |a 231648  |2 nlm 
100 1 |a Li, Yajie  |u College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 
245 1 |a Investigation on Strain-Forming Limits and Manufacturing Optimization of a Single Deep-Drawing Process Concerning 304 Stainless Steel’s Thin Sheet 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In order to solve the problems of wrinkling, cracking, and springback that occur during the single deep drawing forming process of household stainless steel sinks without annealing, the deep drawing process of thin SUS304 stainless steel was studied using a DYNAFORM numerical simulation and experimental analysis. The uniaxial tensile test results indicate that 304 stainless steel exhibits different levels of plasticity in different directions. The TD direction, which is perpendicular to the rolling direction, has the lowest elongation, which is 11.8% lower than that in the rolling direction. The maximum bulging depth of the thin specimens in the finite element simulation reached 17.142 mm, and the maximum bulging depth of the specimens with cracks in the experiment was 16.572 mm, indicating that the results of the finite element simulation were in good agreement with those of the experiment. Finally, through simulation and experimentation, the optimal process for forming stainless thin steel sinks was obtained when the fillet radius R was 5 mm, the stamping speed was 20 mm/s, the blank holder force was 3 MPa, and the friction coefficient was 0.120. 
651 4 |a China 
653 |a Friction 
653 |a Mechanical properties 
653 |a Austenitic stainless steel 
653 |a Rolling direction 
653 |a Finite element method 
653 |a Simulation 
653 |a Cold 
653 |a Software 
653 |a Tensile tests 
653 |a Deep drawing 
653 |a Corrosion resistance 
653 |a Coefficient of friction 
653 |a Metal forming 
653 |a Optimization 
653 |a Blankholders 
653 |a Finite element analysis 
653 |a Manufacturing 
653 |a Forming limits 
653 |a Experimentation 
653 |a Deformation 
653 |a Austenitic stainless steels 
653 |a Computer simulation 
653 |a Computer aided engineering--CAE 
653 |a Springback 
700 1 |a Xu Jianguang  |u Ningbo Oulin Kitchenware Co., Ltd., Ningbo 315100, China; cl2019021@163.com 
700 1 |a Luan Baifeng  |u College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 
773 0 |t Metals  |g vol. 15, no. 9 (2025), p. 1008-1031 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254604430/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254604430/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254604430/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch