Multi-Objective Intelligent Industrial Robot Calibration Using Meta-Heuristic Optimization Approaches

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotics vol. 14, no. 9 (2025), p. 129-145
1. Verfasser: Khanesar, Mojtaba A
Weitere Verfasser: Karaca Aslihan, Minrui, Yan, Piano Samanta, Branson, David
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3254634768
003 UK-CbPIL
022 |a 2218-6581 
024 7 |a 10.3390/robotics14090129  |2 doi 
035 |a 3254634768 
045 2 |b d20250101  |b d20251231 
084 |a 231629  |2 nlm 
100 1 |a Khanesar, Mojtaba A 
245 1 |a Multi-Objective Intelligent Industrial Robot Calibration Using Meta-Heuristic Optimization Approaches 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Precision component displacement, processing, and manipulation in an industrial environment require the high-precision positioning and orientation of industrial robots. However, industrial robots’ positioning includes uncertainties due to assembly and manufacturing tolerances. It is therefore required to use calibration techniques for industrial robot parameters. One of the major sources of uncertainty is the one associated with industrial robot geometrical parameter values. In this paper, using multi-objective meta-heuristic optimization approaches and optical metrology measurements, more accurate Denavit–Hartenberg (DH) geometrical parameters of an industrial robot are estimated. The sensor data used to perform this calibration are the absolute 3D position readings using a highly accurate laser tracker (LT) and industrial robot joint angle readings. Other than position accuracy, the mean absolute deviation of the DH parameters from the manufacturer’s given parameters is considered as the second objective function. Therefore, the optimization problem investigated in this paper is a multi-objective one. The solution to the multi-objective optimization problem is obtained using different evolutionary and swarm optimization approaches. The evolutionary optimization approaches are nondominated sorting genetic algorithms and a multi-objective evolutionary algorithm based on decomposition. The swarm optimization approach considered in this paper is multi-objective particle swarm optimization. It is observed that NSGAII outperforms the other two optimization algorithms in terms of a more diverse Pareto front and the function corresponding to the positional accuracy. It is further observed that through using NSGAII for calibration purposes, the root mean squared for positional error has been improved significantly compared with nominal values. 
653 |a Heuristic 
653 |a Kinematics 
653 |a Particle swarm optimization 
653 |a Accuracy 
653 |a Genetic algorithms 
653 |a Calibration 
653 |a Neural networks 
653 |a Robots 
653 |a Pareto optimization 
653 |a Manufacturers 
653 |a Multiple objective analysis 
653 |a Manufacturing 
653 |a Sorting algorithms 
653 |a Optimization algorithms 
653 |a Uncertainty 
653 |a Parameters 
653 |a Evolutionary algorithms 
653 |a Heuristic methods 
653 |a Industrial robots 
700 1 |a Karaca Aslihan 
700 1 |a Minrui, Yan 
700 1 |a Piano Samanta 
700 1 |a Branson, David 
773 0 |t Robotics  |g vol. 14, no. 9 (2025), p. 129-145 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254634768/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254634768/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254634768/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch