Optimal Scheduling of a Multi-Energy Hub with Integrated Demand Response Programs
Guardado en:
| Publicado en: | Processes vol. 13, no. 9 (2025), p. 2879-2898 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This paper presents an optimal scheduling framework for a multi-energy hub (EH) that integrates electricity, natural gas, wind energy, energy storage systems, and demand response (DR) programs. The EH incorporates key system components including transformers, converters, boilers, combined heat and power (CHP) units, and both thermal and electrical energy storage. A novel aspect of this work is the joint coordination of multi-carrier energy flows with DR flexibility, enabling consumers to actively shift or reduce loads in response to pricing signals while leveraging storage and renewable resources. The optimisation problem is formulated as a mixed-integer linear programming (MILP) model and solved using the CPLEX solver in GAMS. To evaluate system performance, five case studies are investigated under varying natural gas price conditions and hub configurations, including scenarios with and without DR and CHP. Results demonstrate that DR participation significantly reduces total operating costs (up to 6%), enhances renewable utilisation, and decreases peak demand (by around 6%), leading to a flatter demand curve and improved system reliability. The findings highlight the potential of integrated EHs with DR as a cost-effective and flexible solution for future low-carbon energy systems. Furthermore, the study provides insights into practical deployment challenges, including storage efficiency, communication infrastructure, and real-time scheduling requirements, paving the way for hardware-in-the-loop and pilot-scale validations. |
|---|---|
| ISSN: | 2227-9717 |
| DOI: | 10.3390/pr13092879 |
| Fuente: | Materials Science Database |