Physics-Informed Neural Networks for Parameter Identification of Equivalent Thermal Parameters in Residential Buildings During Winter Electric Heating

Guardado en:
Detalles Bibliográficos
Publicado en:Processes vol. 13, no. 9 (2025), p. 2860-2872
Autor principal: Liu, Sijia
Otros Autores: An, Qi, Yuan Ziyi, Pengchao, Lei
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254636629
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13092860  |2 doi 
035 |a 3254636629 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Liu, Sijia 
245 1 |a Physics-Informed Neural Networks for Parameter Identification of Equivalent Thermal Parameters in Residential Buildings During Winter Electric Heating 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate identification of equivalent thermal parameters (ETPs) is crucial for optimizing energy efficiency in residential buildings during winter electric heating. This study proposes a physics-informed neural network (PINN) approach to estimate ETP model parameters, integrating physical constraints with data-driven learning to enhance robustness. The method is validated using real-world measurements from seven rural residences, with indoor and outdoor temperatures and heating power sampled every 15 min. The PINN is compared with linear regression (LR), heuristic methods (GA, PSO, TROA), and data-driven methods (RF, XGBoost, LSTM). The results show that the PINN reduces MAE by over 90% compared to LR, 42% compared to heuristic methods, and 75% compared to pure data-driven methods, with similar improvements in RMSE and MAPE, while maintaining moderate computational time. This work highlights the potential of PINNs as an efficient and reliable tool for building energy management, offering a promising solution for parameter identification within the specific context of the studied residences, with future work needed to confirm scalability across diverse climates and building types. 
653 |a Energy management 
653 |a Accuracy 
653 |a Regression analysis 
653 |a Parameter identification 
653 |a Optimization techniques 
653 |a Equivalence 
653 |a Thermodynamic properties 
653 |a Residential buildings 
653 |a Heuristic 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Heat transfer 
653 |a Residential energy 
653 |a Data integrity 
653 |a Physics 
653 |a Neural networks 
653 |a Inverse problems 
653 |a Temperature 
653 |a Winter 
653 |a Electric heating 
653 |a Problem solving 
653 |a Learning 
653 |a Statistical methods 
653 |a Computing time 
700 1 |a An, Qi 
700 1 |a Yuan Ziyi 
700 1 |a Pengchao, Lei 
773 0 |t Processes  |g vol. 13, no. 9 (2025), p. 2860-2872 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254636629/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254636629/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254636629/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch