Time-Series 3D Modeling of Tunnel Damage Through Fusion of Image and Point Cloud Data

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:Remote Sensing vol. 17, no. 18 (2025), p. 3173-3211
Հիմնական հեղինակ: Lee, Chulhee
Այլ հեղինակներ: Kim Donggyou, Kim Dongku, Kang Joonoh
Հրապարակվել է:
MDPI AG
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3254636638
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17183173  |2 doi 
035 |a 3254636638 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Lee, Chulhee  |u Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea; lch@kict.re.kr (C.L.); dgkim2004@kict.re.kr (D.K.); 
245 1 |a Time-Series 3D Modeling of Tunnel Damage Through Fusion of Image and Point Cloud Data 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Precise maintenance is vital for ensuring the safety of tunnel structures; however, traditional visual inspections are subjective and hazardous. Digital technologies such as LiDAR and imaging offer promising alternatives, but each has complementary limitations in geometric precision and visual representation. This study addresses these limitations by developing a three-dimensional modeling framework that integrates image and point cloud data and evaluates its effectiveness. Terrestrial LiDAR and UAV images were acquired three times over a freeze–thaw cycle at an aging, abandoned tunnel. Based on the data obtained, three types of 3D models were constructed: TLS-based, image-based, and fusion-based. A comparative evaluation results showed that the TLS-based model had excellent geometric accuracy but low resolution due to low point density. The image-based model had high density and excellent resolution but low geometric accuracy. In contrast, the fusion-based model achieved the lowest root mean squared error (RMSE), the highest geometric accuracy, and the highest resolution. Time-series analysis further demonstrated that only the fusion-based model could identify the complex damage progression mechanism in which leakage and icicle formation (visual changes) increased the damaged area by 55.8% (as measured by geometric changes). This also enabled quantitative distinction between active damage (leakage, structural damage) and stable-state damage (spalling, efflorescence, cracks). In conclusion, this study empirically demonstrates the necessity of data fusion for comprehensive tunnel condition diagnosis. It provides a benchmark for evaluating 3D modeling techniques in real-world environments and lays the foundation for digital twin development in data-driven preventive maintenance. 
653 |a Accuracy 
653 |a Defects 
653 |a Concrete 
653 |a Lidar 
653 |a Data processing 
653 |a Damage detection 
653 |a Unmanned aerial vehicles 
653 |a Measurement techniques 
653 |a Data integration 
653 |a Registration 
653 |a Density 
653 |a Leakage 
653 |a Efflorescence 
653 |a Visualization 
653 |a Preventive maintenance 
653 |a Geometric accuracy 
653 |a Inspections 
653 |a Artificial intelligence 
653 |a Digital transformation 
653 |a Lasers 
653 |a Freeze-thawing 
653 |a Root-mean-square errors 
653 |a Sensors 
653 |a Time series 
653 |a Three dimensional models 
653 |a Digital twins 
653 |a Freeze thaw cycles 
653 |a Image acquisition 
653 |a Spalling 
700 1 |a Kim Donggyou  |u Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea; lch@kict.re.kr (C.L.); dgkim2004@kict.re.kr (D.K.); 
700 1 |a Kim Dongku  |u Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea; lch@kict.re.kr (C.L.); dgkim2004@kict.re.kr (D.K.); 
700 1 |a Kang Joonoh  |u Department of Urban Engineering, Incheon National University, Incheon 22012, Republic of Korea 
773 0 |t Remote Sensing  |g vol. 17, no. 18 (2025), p. 3173-3211 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254636638/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254636638/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254636638/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch