Do We Need a Voice Methodology? Proposing a Voice-Centered Methodology: A Conceptual Framework in the Age of Surveillance Capitalism

Salvato in:
Dettagli Bibliografici
Pubblicato in:Societies vol. 15, no. 9 (2025), p. 241-267
Autore principale: Caroleo, Laura
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3254643605
003 UK-CbPIL
022 |a 2075-4698 
024 7 |a 10.3390/soc15090241  |2 doi 
035 |a 3254643605 
045 2 |b d20250101  |b d20251231 
084 |a 231632  |2 nlm 
100 1 |a Caroleo, Laura 
245 1 |a Do We Need a Voice Methodology? Proposing a Voice-Centered Methodology: A Conceptual Framework in the Age of Surveillance Capitalism 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper explores the rise in voice-based social media as a pivotal transformation in digital communication, situated within the broader era of chatbots and voice AI. Platforms such as Clubhouse, X Spaces, Discord and similar ones foreground vocal interaction, reshaping norms of participation, identity construction, and platform governance. This shift from text-centered communication to hybrid digital orality presents new sociological and methodological challenges, calling for the development of voice-centered analytical approaches. In response, the paper introduces a multidimensional methodological framework for analyzing voice-based social media platforms in the context of surveillance capitalism and AI-driven conversational technologies. We propose a high-level reference architecture machine learning for social science pipeline that integrates digital methods techniques, automatic speech recognition (ASR) models, and natural language processing (NLP) models within a reflexive and ethically grounded framework. To illustrate its potential, we outline possible stages of a PoC (proof of concept) audio analysis machine learning pipeline, demonstrated through a conceptual use case involving the collection, ingestion, and analysis of X Spaces. While not a comprehensive empirical study, this pipeline proposal highlights technical and ethical challenges in voice analysis. By situating the voice as a central axis of online sociality and examining it in relation to AI-driven conversational technologies, within an era of post-orality, the study contributes to ongoing debates on surveillance capitalism, platform affordances, and the evolving dynamics of digital interaction. In this rapidly evolving landscape, we urgently need a robust vocal methodology to ensure that voice is not just processed but understood. 
653 |a Ethics 
653 |a Surveillance 
653 |a Communication 
653 |a Conversation 
653 |a Machine learning 
653 |a Methodological problems 
653 |a User generated content 
653 |a Models 
653 |a Ethical standards 
653 |a Capitalism 
653 |a Neoliberalism 
653 |a Social sciences 
653 |a Sociology 
653 |a Artificial intelligence 
653 |a Speech recognition 
653 |a Ingestion 
653 |a Social media 
653 |a Mass media effects 
653 |a Social discrimination learning 
653 |a Algorithms 
653 |a Subjectivity 
653 |a Personal information 
653 |a User behavior 
653 |a Social networks 
653 |a Governance 
653 |a Learning algorithms 
653 |a Methodology 
653 |a Voice recognition 
653 |a Natural language processing 
653 |a Computer platforms 
653 |a Data collection 
653 |a Automatic speech recognition 
653 |a Concept learning 
653 |a Digital technology 
653 |a Digital media 
653 |a Ethical dilemmas 
653 |a Research methodology 
653 |a Frame analysis 
653 |a Mass media 
653 |a Transformation 
653 |a Voice analysis 
773 0 |t Societies  |g vol. 15, no. 9 (2025), p. 241-267 
786 0 |d ProQuest  |t Social Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254643605/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254643605/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254643605/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch