A CPS-Based Architecture for Mobile Robotics: Design, Integration, and Localisation Experiments

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors vol. 25, no. 18 (2025), p. 5715-5742
1. Verfasser: Líšková Dominika
Weitere Verfasser: Jadlovská Anna, Pazdič Filip
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3254645680
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25185715  |2 doi 
035 |a 3254645680 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Líšková Dominika  |u Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia 
245 1 |a A CPS-Based Architecture for Mobile Robotics: Design, Integration, and Localisation Experiments 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents the design and implementation of a mobile robotic platform modelled as a layered Cyber–Physical System (CPS). Inspired by architectures commonly used in industrial Distributed Control Systems (DCSs) and large-scale scientific infrastructures, the proposed system incorporates modular hardware, distributed embedded control, and multi-level coordination. The robotic platform, named MapBot, is structured according to a five-layer CPS model encompassing component, control, coordination, supervisory, and management layers. This structure facilitates modular development, system scalability, and integration of advanced features such as a digital twin. The platform is implemented using embedded computing elements, diverse sensors, and communication protocols including Ethernet and I2C. The system operates within the ROS2 framework, supporting flexible task distribution across processing nodes. As a use case, two localization techniques—Adaptive Monte Carlo Localization (AMCL) and pose graph SLAM—are deployed and evaluated, highlighting the performance trade-offs in map quality, update frequency, and computational load. The results demonstrate that CPS-based design principles offer clear advantages for robotic platforms in terms of modularity, maintainability, and real-time integration. The proposed approach can be generalised for other robotic or mechatronic systems requiring structured, layered control and embedded intelligence. 
653 |a Software 
653 |a Embedded systems 
653 |a Communication 
653 |a Sensors 
653 |a Decision making 
653 |a Flexibility 
653 |a Robots 
653 |a Distributed control systems 
653 |a Decentralization 
653 |a Design 
653 |a Modularity 
653 |a Informatics 
653 |a Localization 
653 |a Fault tolerance 
653 |a Robotics 
700 1 |a Jadlovská Anna  |u Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia 
700 1 |a Pazdič Filip  |u School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; f.pazdic@bham.ac.uk 
773 0 |t Sensors  |g vol. 25, no. 18 (2025), p. 5715-5742 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254645680/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254645680/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254645680/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch