Sit-and-Reach Pose Detection Based on Self-Train Method and Ghost-ST-GCN

Guardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 25, no. 18 (2025), p. 5624-5642
Autor principal: Jiang Shuheng
Otros Autores: Cui Haihua, Jin Liyuan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254645935
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25185624  |2 doi 
035 |a 3254645935 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Jiang Shuheng  |u Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 
245 1 |a Sit-and-Reach Pose Detection Based on Self-Train Method and Ghost-ST-GCN 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The sit-and-reach test is a common stretching exercise suitable for adolescents, aimed at improving joint flexibility and somatic neural control, and has become a mandatory item in China’s student physical fitness assessments. However, many students tend to perform incorrect postures during their practice, which may lead to sports injuries such as muscle strains if sustained over time. To address this issue, this paper proposes a Ghost-ST-GCN model for judging the correctness of the sit-and-reach pose. The model first requires detecting seven body keypoints. Leveraging a publicly available labeled keypoint dataset and unlabeled sit-and-reach videos, these keypoints are acquired through the proposed self-train method using the BlazePose network. Subsequently, the keypoints are fed into the Ghost-ST-GCN model, which consists of nine stacked GCN-TCN blocks. Critically, each GCN-TCN layer is embedded with a ghost layer to enhance efficiency. Finally, a classification layer determines the movement’s correctness. Experimental results demonstrate that the self-train method significantly improves the annotation accuracy of the seven keypoints; the integration of ghost layers streamlines the overall detection model; and the system achieves an action detection accuracy of 85.20% for the sit-and-reach exercise, with a response latency of less than 1 s. This approach is highly suitable for guiding adolescents to standardize their movements during independent sit-and-reach practice. 
653 |a Hip joint 
653 |a Exercise 
653 |a Accuracy 
653 |a Physical fitness 
653 |a Deep learning 
653 |a Computer vision 
653 |a Swimming 
653 |a Optimization 
653 |a Range of motion 
653 |a Athletes 
653 |a Coaches & managers 
653 |a Posture 
653 |a Online tutorials 
653 |a Feedback 
653 |a Sports injuries 
700 1 |a Cui Haihua  |u Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 
700 1 |a Jin Liyuan  |u University of California San Diego, La Jolla, CA 92093, USA 
773 0 |t Sensors  |g vol. 25, no. 18 (2025), p. 5624-5642 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254645935/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254645935/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254645935/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch