Perpendicular Bisector Optimization Algorithm (PBOA): A Novel Geometric-Mathematics-Inspired Metaheuristic Algorithm for Controller Parameter Optimization

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Symmetry vol. 17, no. 9 (2025), p. 1410-1463
Kaituhi matua: Wu, Dafei
Ētahi atu kaituhi: Chen, Wei, Zhang, Ying
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3254649155
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17091410  |2 doi 
035 |a 3254649155 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Wu, Dafei 
245 1 |a Perpendicular Bisector Optimization Algorithm (PBOA): A Novel Geometric-Mathematics-Inspired Metaheuristic Algorithm for Controller Parameter Optimization 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To address the inadequate balance between exploration and exploitation of existing algorithms in complex solution spaces, this paper proposes a novel mathematical metaheuristic optimization algorithm—the Perpendicular Bisector Optimization Algorithm (PBOA). Inspired by the geometric symmetry of perpendicular bisectors (the endpoints of a line segment are symmetric about them), the algorithm designs differentiated convergence strategies. In the exploration phase, a slow convergence strategy is adopted (deliberately steering particles away from the optimal region defined by the perpendicular bisector) to expand the search space; in the exploitation phase, fast convergence refines the search process and improves accuracy. It selects 4 particles to construct line segments and perpendicular bisectors with the current particle, enhancing global exploration capability. The experimental results on 27 benchmark functions, compared with 15 state-of-the-art algorithms, show that the PBOA outperforms others in accuracy, stability, and efficiency. When applied to 5 engineering design problems, its fitness values are significantly lower. For H-type motion platforms, the PBOA-optimized platform not only achieves high unidirectional motion accuracy, but also the average synchronization error of the two Y-direction motion mechanisms reaches ±2.6 × 10−5 mm, with stable anti-interference performance. 
653 |a Accuracy 
653 |a Search process 
653 |a Design optimization 
653 |a Principles 
653 |a Convergence 
653 |a Exploitation 
653 |a Design engineering 
653 |a Optimization techniques 
653 |a Hydrologic cycle 
653 |a Mutation 
653 |a Genetic algorithms 
653 |a Decision making 
653 |a Optimization 
653 |a Solution space 
653 |a Synchronism 
653 |a Algorithms 
653 |a Foraging behavior 
653 |a Segments 
653 |a Optimization algorithms 
653 |a Geometry 
653 |a Symmetry 
653 |a Heuristic methods 
700 1 |a Chen, Wei 
700 1 |a Zhang, Ying 
773 0 |t Symmetry  |g vol. 17, no. 9 (2025), p. 1410-1463 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254649155/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254649155/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254649155/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch