Phoneme-Aware Augmentation for Robust Cantonese ASR Under Low-Resource Conditions

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 9 (2025), p. 1478-1496
Autor principal: Zhang Lusheng
Otros Autores: Wu, Shie, Wang Zhongxun
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Cantonese automatic speech recognition (ASR) faces persistent challenges due to its nine lexical tones, extensive phonological variation, and the scarcity of professionally transcribed corpora. To address these issues, we propose a lightweight and data-efficient framework that leverages weak phonetic supervision (WPS) in conjunction with two pho-neme-aware augmentation strategies. (1) Dynamic Boundary-Aligned Phoneme Dropout progressively removes entire IPA segments according to a curriculum schedule, simulating real-world phenomena such as elision, lenition, and tonal drift while ensuring training stability. (2) Phoneme-Aware SpecAugment confines all time- and frequency-masking operations within phoneme boundaries and prioritizes high-attention regions, thereby preserving intra-phonemic contours and formant integrity. Built on the Whistle encoder—which integrates a Conformer backbone, Connectionist Temporal Classification–Conditional Random Field (CTC-CRF) alignment, and a multi-lingual phonetic space—the approach requires only a grapheme-to-phoneme lexicon and Montreal Forced Aligner outputs, without any additional manual labeling. Experiments on the Cantonese subset of Common Voice demonstrate consistent gains: Dynamic Dropout alone reduces phoneme error rate (PER) from 17.8% to 16.7% with 50 h of speech and 16.4% to 15.1% with 100 h, while the combination of the two augmentations further lowers PER to 15.9%/14.4%. These results confirm that structure-aware phoneme-level perturbations provide an effective and low-cost solution for building robust Cantonese ASR systems under low-resource conditions.
ISSN:2073-8994
DOI:10.3390/sym17091478
Fuente:Engineering Database