A Federated Intrusion Detection System for Edge Environments Using Multi-Index Hashing and Attention-Based KNN

Guardado en:
Bibliografiske detaljer
Udgivet i:Symmetry vol. 17, no. 9 (2025), p. 1580-1597
Hovedforfatter: Liu, Ying
Andre forfattere: Liu, Xing, Yu, Hao, Bowen, Guo, Liu, Xiao
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3254653028
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17091580  |2 doi 
035 |a 3254653028 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Liu, Ying  |u State Grid Corporation of China, Beijing 100124, China; liuying@sgcc.com.cn 
245 1 |a A Federated Intrusion Detection System for Edge Environments Using Multi-Index Hashing and Attention-Based KNN 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Edge computing offers low-latency and distributed processing for IoT applications but poses new security challenges, due to limited resources and decentralized data. Intrusion detection systems (IDSs) are essential for real-time threat monitoring, yet traditional IDS frameworks often struggle in edge environments, failing to meet efficiency requirements. This paper presents an efficient intrusion detection framework that integrates spatiotemporal hashing, federated learning, and fast K-nearest neighbor (KNN) retrieval. A hashing neural network encodes network traffic into compact binary codes, enabling low-overhead similarity comparison via Hamming distance. To support scalable retrieval, multi-index hashing is applied for sublinear KNN searching. Additionally, we propose an attention-guided federated aggregation strategy that dynamically adjusts client contributions, reducing communication costs. Our experiments on benchmark datasets demonstrate that our method achieves competitive detection accuracy with significantly lower computational, memory, and communication overhead, making it well-suited for edge-based deployment. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Embedded systems 
653 |a Collaboration 
653 |a Deep learning 
653 |a Neural networks 
653 |a Infrastructure 
653 |a Edge computing 
653 |a Intrusion detection systems 
653 |a Communication 
653 |a Binary codes 
653 |a Communications traffic 
653 |a Sensors 
653 |a Retrieval 
653 |a Codes 
653 |a Privacy 
653 |a Real time 
653 |a Federated learning 
653 |a Distributed processing 
700 1 |a Liu, Xing  |u Nari Information & Communication Technology Co., Ltd., Nanjing 210003, China; liuxing@sgepri.sgcc.com.cn (X.L.); yuhao5@sgepri.sgcc.com.cn (H.Y.) 
700 1 |a Yu, Hao  |u Nari Information & Communication Technology Co., Ltd., Nanjing 210003, China; liuxing@sgepri.sgcc.com.cn (X.L.); yuhao5@sgepri.sgcc.com.cn (H.Y.) 
700 1 |a Bowen, Guo  |u The School of Intelligent Software and Engineering, Nanjing University, Suzhou 215163, China; bowen@smail.nju.edu.cn 
700 1 |a Liu, Xiao  |u The School of Intelligent Software and Engineering, Nanjing University, Suzhou 215163, China; bowen@smail.nju.edu.cn 
773 0 |t Symmetry  |g vol. 17, no. 9 (2025), p. 1580-1597 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254653028/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254653028/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254653028/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch