A Federated Intrusion Detection System for Edge Environments Using Multi-Index Hashing and Attention-Based KNN
Guardado en:
| Udgivet i: | Symmetry vol. 17, no. 9 (2025), p. 1580-1597 |
|---|---|
| Hovedforfatter: | |
| Andre forfattere: | , , , |
| Udgivet: |
MDPI AG
|
| Fag: | |
| Online adgang: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tags: |
Ingen Tags, Vær først til at tagge denne postø!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3254653028 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2073-8994 | ||
| 024 | 7 | |a 10.3390/sym17091580 |2 doi | |
| 035 | |a 3254653028 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231635 |2 nlm | ||
| 100 | 1 | |a Liu, Ying |u State Grid Corporation of China, Beijing 100124, China; liuying@sgcc.com.cn | |
| 245 | 1 | |a A Federated Intrusion Detection System for Edge Environments Using Multi-Index Hashing and Attention-Based KNN | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Edge computing offers low-latency and distributed processing for IoT applications but poses new security challenges, due to limited resources and decentralized data. Intrusion detection systems (IDSs) are essential for real-time threat monitoring, yet traditional IDS frameworks often struggle in edge environments, failing to meet efficiency requirements. This paper presents an efficient intrusion detection framework that integrates spatiotemporal hashing, federated learning, and fast K-nearest neighbor (KNN) retrieval. A hashing neural network encodes network traffic into compact binary codes, enabling low-overhead similarity comparison via Hamming distance. To support scalable retrieval, multi-index hashing is applied for sublinear KNN searching. Additionally, we propose an attention-guided federated aggregation strategy that dynamically adjusts client contributions, reducing communication costs. Our experiments on benchmark datasets demonstrate that our method achieves competitive detection accuracy with significantly lower computational, memory, and communication overhead, making it well-suited for edge-based deployment. | |
| 653 | |a Machine learning | ||
| 653 | |a Accuracy | ||
| 653 | |a Embedded systems | ||
| 653 | |a Collaboration | ||
| 653 | |a Deep learning | ||
| 653 | |a Neural networks | ||
| 653 | |a Infrastructure | ||
| 653 | |a Edge computing | ||
| 653 | |a Intrusion detection systems | ||
| 653 | |a Communication | ||
| 653 | |a Binary codes | ||
| 653 | |a Communications traffic | ||
| 653 | |a Sensors | ||
| 653 | |a Retrieval | ||
| 653 | |a Codes | ||
| 653 | |a Privacy | ||
| 653 | |a Real time | ||
| 653 | |a Federated learning | ||
| 653 | |a Distributed processing | ||
| 700 | 1 | |a Liu, Xing |u Nari Information & Communication Technology Co., Ltd., Nanjing 210003, China; liuxing@sgepri.sgcc.com.cn (X.L.); yuhao5@sgepri.sgcc.com.cn (H.Y.) | |
| 700 | 1 | |a Yu, Hao |u Nari Information & Communication Technology Co., Ltd., Nanjing 210003, China; liuxing@sgepri.sgcc.com.cn (X.L.); yuhao5@sgepri.sgcc.com.cn (H.Y.) | |
| 700 | 1 | |a Bowen, Guo |u The School of Intelligent Software and Engineering, Nanjing University, Suzhou 215163, China; bowen@smail.nju.edu.cn | |
| 700 | 1 | |a Liu, Xiao |u The School of Intelligent Software and Engineering, Nanjing University, Suzhou 215163, China; bowen@smail.nju.edu.cn | |
| 773 | 0 | |t Symmetry |g vol. 17, no. 9 (2025), p. 1580-1597 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3254653028/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3254653028/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3254653028/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |