Kernel Mean p-Power Loss-Enhanced Robust Hammerstein Adaptive Filter and Its Performance Analysis

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:Symmetry vol. 17, no. 9 (2025), p. 1556-1575
Հիմնական հեղինակ: Liu, Yan
Այլ հեղինակներ: Tu Chuanliang, Liu, Yong, Chen, Yu, Wen Chenggan, Yin Banghui
Հրապարակվել է:
MDPI AG
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3254653046
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17091556  |2 doi 
035 |a 3254653046 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Liu, Yan  |u College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China; yanliu@nudt.edu.cn 
245 1 |a Kernel Mean p-Power Loss-Enhanced Robust Hammerstein Adaptive Filter and Its Performance Analysis 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Hammerstein adaptive filters (HAFs) are widely used for nonlinear system identification due to their structural simplicity and modeling effectiveness. However, their performance can degrade significantly in the presence of impulsive disturbance or other more complex non-Gaussian noise, which are common in real-world scenarios. To address this limitation, this paper proposes a robust HAF algorithm based on the kernel mean p-power error (KMPE) criterion. By extending the p-power loss into the kernel space, KMPE preserves its symmetry while providing enhanced robustness against non-Gaussian noise in adaptive filter design. In addition, random Fourier features are employed to flexibly and efficiently model the nonlinear component of the system. A theoretical analysis of steady-state excess mean square error is presented, and our simulation results validate the superior robustness and accuracy of the proposed method over the classical HAF and its robust variants. 
653 |a Mean square errors 
653 |a Random variables 
653 |a Normal distribution 
653 |a Signal processing 
653 |a Approximation 
653 |a Design 
653 |a Random noise 
653 |a Noise 
653 |a System identification 
653 |a Filter design (mathematics) 
653 |a Algorithms 
653 |a Nonlinear systems 
653 |a Adaptive filters 
653 |a Robustness 
700 1 |a Tu Chuanliang  |u College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China 
700 1 |a Liu, Yong  |u College of Electronic Science, National University of Defense Technology, Changsha 410073, China; liuyong24@nudt.edu.cn 
700 1 |a Chen, Yu  |u College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China; chenyu1176@hnu.edu.cn (Y.C.); wenchenggan@hnu.edu.cn (C.W.) 
700 1 |a Wen Chenggan  |u College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China; chenyu1176@hnu.edu.cn (Y.C.); wenchenggan@hnu.edu.cn (C.W.) 
700 1 |a Yin Banghui  |u School of Electronic Information, Central South University, Changsha 410083, China; yinbanghui@csu.edu.cn 
773 0 |t Symmetry  |g vol. 17, no. 9 (2025), p. 1556-1575 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254653046/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254653046/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254653046/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch