Industry-Driven Model-Based Systems Engineering (MBSE) Workforce Competencies—An AI-Based Competency Extraction Framework

Guardado en:
Detalles Bibliográficos
Publicado en:Systems vol. 13, no. 9 (2025), p. 781-801
Autor principal: Akundi Aditya
Otros Autores: Ravipati Phani Ram Teja, Luna Fong Sergio A., Otieno Wilkistar
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254653053
003 UK-CbPIL
022 |a 2079-8954 
024 7 |a 10.3390/systems13090781  |2 doi 
035 |a 3254653053 
045 2 |b d20250101  |b d20251231 
084 |a 231636  |2 nlm 
100 1 |a Akundi Aditya  |u Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USAotieno@uwm.edu (W.O.) 
245 1 |a Industry-Driven Model-Based Systems Engineering (MBSE) Workforce Competencies—An AI-Based Competency Extraction Framework 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Model-based systems engineering (MBSE) is being rapidly adopted in U.S. industries across various sectors. While practitioners and academics recognize many benefits of adopting MBSE, industries also report challenges such as limited tool expertise and a shortage of skilled personnel. Highlighting the difficulties in industry adoption of MBSE, prior research by the authors identified challenges such as tool limitations, knowledge gaps, cultural and political barriers, costs, and the level of customer understanding and acceptance of MBSE practices. Additionally, another study by the authors points out a gap between industry demands for MBSE skills in new hires and the current academic training programs. To further assess the MBSE industry’s workforce needs, this paper introduces a two-phase method for the Structured Extraction of MBSE competencies using large language models based on current workforce demands from LinkedIn job postings. Phase 1 involved extracting 1960 job descriptions from LinkedIn using the term “model-based systems engineer.” In phase 2, large language models (LLMs) employing deep transformer architectures were used to transform unstructured text into structured data. An AI agent was used as an autonomous software layer to manage every interaction between the raw dataset from Phase 1 and the LLM. Supported by the analyzed data, a competency framework is proposed that summarizes the tools, technical skills, and soft skills expected of a model-based systems engineer by the industry. The framework is designed to include core competencies shared across all MBSE roles, with specific competencies tailored for aerospace & defense, manufacturing and automotive, and software and IT sectors. 
610 4 |a LinkedIn Corp 
653 |a Language 
653 |a Systems engineering 
653 |a Soft skills 
653 |a Software 
653 |a Qualifications 
653 |a Large language models 
653 |a Curricula 
653 |a Model-based systems 
653 |a Data mining 
653 |a Systems design 
653 |a Skills 
653 |a Workforce 
653 |a Structured data 
653 |a Engineers 
653 |a Natural language processing 
653 |a Unstructured data 
653 |a Professionals 
653 |a Industry 4.0 
653 |a Job descriptions 
700 1 |a Ravipati Phani Ram Teja  |u Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USAotieno@uwm.edu (W.O.) 
700 1 |a Luna Fong Sergio A.  |u Department of Industrial, Manufacturing and Systems Engineering, The University of Texas at El Paso, El Paso, TX 79936, USA; salunafong@utep.edu 
700 1 |a Otieno Wilkistar  |u Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USAotieno@uwm.edu (W.O.) 
773 0 |t Systems  |g vol. 13, no. 9 (2025), p. 781-801 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254653053/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3254653053/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254653053/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch