Notch2 Signaling Drives Cardiac Hypertrophy by Suppressing Purine Nucleotide Metabolism
Guardado en:
| Publicado en: | Research vol. 8 (2025) |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , , , , , , , , , , , , |
| Publicado: | |
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Gain-of-function mutations of Notch2 cause the rare autosomal dominant disorder known as Hajdu–Cheney syndrome (HCS). Most patients with HCS develop congenital heart disease; however, the precise mechanisms remain elusive. Here, a murine model expressing the human Notch2 intracellular domain (hN2ICD) in cardiomyocytes (hN2ICD-Tg CM ) was generated and the mice spontaneously developed ventricular diastolic dysfunction with preserved ejection fraction and cardiac hypertrophy. Ectopic hN2ICD expression promoted cardiomyocyte hypertrophy by suppressing adenylosuccinate lyase (ADSL)-mediated adenosine 5′-monophosphate (AMP) generation, which further enhanced the activation of the mammalian target of rapamycin complex 1 pathway by reducing AMP-activated kinase activity. Hairy and enhancer of split 1 silencing abrogated hN2ICD-induced cardiomyocyte hypertrophy by increasing Adsl transcription. Importantly, pharmacological activation of AMP-activated kinase ameliorated cardiac hypertrophy and dysfunction in hN2ICD-Tg CM mice. The frameshift mutation in Notch2 exon 34 (c.6426dupT), which causes early-onset HCS, induces AC16 human cardiomyocyte hypertrophy through suppressing ADSL-mediated AMP generation. Thus, targeting Notch2-mediated purine nucleotide metabolism may be an attractive therapeutic approach to heart failure treatment. |
|---|---|
| ISSN: | 2096-5168 2639-5274 |
| DOI: | 10.34133/research.0635 |
| Fuente: | Science Database |