Latency Prediction in Distributed Control Systems Using FPGAAccelerated Neural Networks

Zapisane w:
Opis bibliograficzny
Wydane w:Informatica vol. 49, no. 28 (Aug 2025), p. 105-120
1. autor: Zhang, Lei
Kolejni autorzy: Li, Xiaofei, Huang, Baozhong, Wei, Hao
Wydane:
Slovenian Society Informatika / Slovensko drustvo Informatika
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3254941828
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v49128.8472  |2 doi 
035 |a 3254941828 
045 2 |b d20250801  |b d20250831 
084 |a 179436  |2 nlm 
100 1 |a Zhang, Lei  |u Fujian Fuging Nuclear Power Co., LTD., Fujian, China 
245 1 |a Latency Prediction in Distributed Control Systems Using FPGAAccelerated Neural Networks 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Aug 2025 
513 |a Journal Article 
520 3 |a To improve the real-time performance and stability of distributed control systems in complex and dynamic environments, this study introduces a delay prediction and optimization model. The model is built on an integrated architecture that combines Long Short-Term Memory (LSTM) neural networks with Field Programmable Gate Array (FPGA). A sliding window input mechanism is used, where a recent sequence of historical delay data serves as input to forecast short-term system response latency. To support efficient hardware deployment, the LSTM model was quantized to 8-bit fixed-point precision. Additionally, the FPGA implementation was optimized through the design of a parallel pipelined architecture and an onchip cache scheduling mechanism. These enhancements significantly improve inference speed and resource utilization. Experiments were conducted using the Electric Transformer Temperature (ETT) time-series dataset series. The proposed model was compared against several representative approaches. Evaluation metrics included prediction accuracy, response latency, system throughput, resource consumption, task success rate, and overall stability. On the ETT-small-m3 dataset, the optimized model achieved a task completion rate of 99.699%, a system throughput of 1,424.082 tasks per second, and an average response time of 0.247 seconds. These results surpassed those of the baseline models across most performance indicators. To evaluate generalization, five-fold cross-validation was performed. Analysis of variance (ANOVA) was also conducted to confirm the statistical significance of the results, with all pvalues below 0.05, ensuring the reliability of the experimental findings. Despite its strengths, the model has limitations in certain reliability metrics. For example, the mean time between failures was slightly lower than that of the Multi-Agent System-Based Distributed Control Model (MAS-DCM), suggesting reduced stability under high-pressure or high-load conditions. Moreover, the model's adaptability to scenarios involving multi-source heterogeneous data has not been comprehensively tested. In summary, this study presents a deployable, efficient, and scalable architecture for intelligent delay prediction. The proposed solution provides a practical approach to delay modeling and performance optimization in smart control systems. It holds strong potential for real-world applications and lays a solid foundation for future research and development in this area. 
653 |a Accuracy 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Response time 
653 |a Computer architecture 
653 |a Optimization 
653 |a Control systems 
653 |a Research & development--R&D 
653 |a Systems stability 
653 |a Field programmable gate arrays 
653 |a Variance analysis 
653 |a MTBF 
653 |a Efficiency 
653 |a Optimization models 
653 |a Scheduling 
653 |a Propagation 
653 |a Machine learning 
653 |a Embedded systems 
653 |a Neural networks 
653 |a Delay 
653 |a Reliability 
653 |a Network latency 
653 |a Distributed control systems 
653 |a Stability 
653 |a Multiagent systems 
653 |a Resource utilization 
653 |a Real time 
700 1 |a Li, Xiaofei  |u Fujian Fuging Nuclear Power Co., LTD., Fujian, China 
700 1 |a Huang, Baozhong  |u Atomhorizon Electric (Jinan) Co., Ltd., Jinan, Shandong, China 
700 1 |a Wei, Hao  |u Atomhorizon Electric (Jinan) Co., Ltd., Jinan, Shandong, China 
773 0 |t Informatica  |g vol. 49, no. 28 (Aug 2025), p. 105-120 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254941828/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254941828/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254941828/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch