A Hybrid Fuzzy Logic and Deep Learning Model for Corpus-Based German Language Learning with NLP

Guardado en:
Detalles Bibliográficos
Publicado en:Informatica vol. 49, no. 21 (May 2025), p. 1-15
Autor principal: Wang, Bo
Publicado:
Slovenian Society Informatika / Slovensko drustvo Informatika
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3254942031
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v49i21.7423  |2 doi 
035 |a 3254942031 
045 2 |b d20250501  |b d20250531 
084 |a 179436  |2 nlm 
100 1 |a Wang, Bo  |u Xi'an Fanyi University, Xi'an 710105, China 
245 1 |a A Hybrid Fuzzy Logic and Deep Learning Model for Corpus-Based German Language Learning with NLP 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c May 2025 
513 |a Journal Article 
520 3 |a This study proposes and implements a German learning system based on a hybrid fuzzy-neural model, aiming to enhance the language acquisition efficiency of German learners by integrating the strengths of fuzzy logic in handling uncertainty with those of deep neural networks for complex pattern recognition. Through detailed computational experiments, the hybrid model achieved significant improvements over traditional and baseline methods, with key results including vocabulary acquisition accuracy of 90.5% ± 1.2%, syntactic analysis accuracy of 88.7% ± 1.6%, sentiment analysis accuracy of 92.1% ± 1.3%, and a reading comprehension BLEU score of 42.3 ± 1.5%. Students in the experimental group showed substantial gains from pre-test (75.8 ± 5.2) to post-test (88.3 ± 4.1), achieving an average improvement of 12.5 points compared to the control group's 5.9-point increase. Additionally, the experimental group rated the teaching content as rich and diverse (4.7/5), found the teaching methods interesting and effective (4.5/5), felt it helped improve their language skills (4.8/5), and considered it easy to learn independently (4.6/5), with overall satisfaction at 4.7/5. These findings highlight the hybrid fuzzy-neural model's effectiveness in enhancing both learning outcomes and student engagement in German language education. 
653 |a Language acquisition 
653 |a Comprehension 
653 |a Deep learning 
653 |a Fuzzy logic 
653 |a Artificial neural networks 
653 |a Language instruction 
653 |a Neural networks 
653 |a Syntactic analysis 
653 |a Machine learning 
653 |a Teaching methods 
653 |a Pattern recognition 
653 |a Accuracy 
653 |a Vocabulary learning 
653 |a Sentiment analysis 
653 |a Learning outcomes 
653 |a Decision making 
653 |a Natural language processing 
653 |a Effectiveness 
653 |a Students 
653 |a German language 
653 |a Language proficiency 
653 |a Experiments 
653 |a Reading comprehension 
653 |a Learning 
653 |a Student participation 
653 |a Teaching 
653 |a Logic 
653 |a Vocabulary 
653 |a Uncertainty 
653 |a Satisfaction 
773 0 |t Informatica  |g vol. 49, no. 21 (May 2025), p. 1-15 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254942031/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254942031/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254942031/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch