Hybrid Particle Swarm Optimization and Q-Learning for Airport Parking Space Allocation and Scheduling

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:Informatica vol. 49, no. 31 (Sep 2025), p. 71-87
প্রধান লেখক: Huang, Chunxin
প্রকাশিত:
Slovenian Society Informatika / Slovensko drustvo Informatika
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3254942313
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v49131.8352  |2 doi 
035 |a 3254942313 
045 2 |b d20250901  |b d20250930 
084 |a 179436  |2 nlm 
100 1 |a Huang, Chunxin  |u College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, China 
245 1 |a Hybrid Particle Swarm Optimization and Q-Learning for Airport Parking Space Allocation and Scheduling 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Sep 2025 
513 |a Journal Article 
520 3 |a With the rapid development of the aviation industry, the contradiction between the shortage of airport parking space resources and the continuous growth of air transportation demand has become increasingly prominent. Traditional parking space allocation and scheduling methods have been unable to cope with the increasingly complex and dynamic operating environment. To address this challenge, this paper proposes an airport parking space allocation and scheduling optimization model based on a meta-heuristic algorithm, combining the particle swarm optimization (PSO) algorithm with the Olearning reinforcement learning method, aiming to improve the utilization efficiency of parking space resources and the level of intelligent scheduling. The method uses PSO to examine at the whole scheduling space and Q-learning to make adjustments to allocations depending on feedback from the environment in real time. In terms of research methods, we first constructed a mathematical model with multiple constraints and a comprehensive objective function, used the PSO algorithm to perform preliminary allocation of parking spaces, and introduced an adaptive mechanism to enhance the search capability. At the same time, the Q-learning model continuously optimizes scheduling decisions through interaction with the environment to ensure the optimal balance between the global and local. The hybrid approach enhances both global search and local optimization. The results show that this method is superior to individual PSO, Q-learning and traditional heuristic methods in multiple key indicators, including total scheduling cost, delay time, parking space utilization, algorithm convergence speed, number of scheduling conflicts, calculation time and successful scheduling rate. By coordinating factors such as cost, time and safety, the model can significantly improve airport operating efficiency, reduce flight delays and optimize resource allocation. With the CloudSim toolkit to run tests in a simulated cloud environment shows that our strategy cuts the average task latency by 15.2% and the overall scheduling cost by 12.5% compared to classic PSO and heuristic methods. The suggested approach works most effective when there are constraints on items like resource capacity, task deadlines, and energy use. The evaluation measures, which include makespan, cost, and delay time, show that the hybrid strategy works well and is strong. 
653 |a Particle swarm optimization 
653 |a Integer programming 
653 |a Delay time 
653 |a Resource allocation 
653 |a Aviation 
653 |a Parking 
653 |a Heuristic 
653 |a Airports 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Optimization models 
653 |a Scheduling 
653 |a Air transportation 
653 |a Research methodology 
653 |a Travel demand 
653 |a Genetic algorithms 
653 |a Decision making 
653 |a Air transportation industry 
653 |a Algorithms 
653 |a Linear programming 
653 |a Local optimization 
653 |a Space allocation 
653 |a Energy consumption 
653 |a Constraints 
653 |a Optimization algorithms 
773 0 |t Informatica  |g vol. 49, no. 31 (Sep 2025), p. 71-87 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3254942313/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3254942313/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3254942313/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch