Computational analysis of shock wave diffraction for convex slabs
Guardado en:
| Publicado en: | Journal of the Brazilian Society of Mechanical Sciences and Engineering vol. 47, no. 7 (Jul 2025), p. 336 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
Springer Nature B.V.
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | The present study is centered on the vortexlets in the shock wave diffraction over three different slabs (60°, 90°, and 120°) for shock Mach numbers of 1.65, and 3.0. The third-order accurate implicit solver is built on advection upstream splitting along with least squares cell-based method and utilizes the benefits of refined mesh in the regions having high discontinuities. Vortexlet formation, pressure ratio and specific heat flux on the step wall, and movement of the separation point are some of the key aspects of the present analysis. For the numerical simulation of the moving shock, the Finite Volume Method is utilized to find the solutions of the governing equations. Vortexlets, secondary shock, embedded shock, contact surface, slipstream, expansion fan, and vortex are captured precisely. Apart from isopycnics; isobars, isotherms, and velocity contours are plotted as well. Our results emphasize the fact that there exists two types of vortexlets, which are different in their positions apart from their driving mechanisms. |
|---|---|
| ISSN: | 1678-5878 1806-3691 0100-7386 1678-3026 1678-4820 |
| DOI: | 10.1007/s40430-025-05655-1 |
| Fuente: | Advanced Technologies & Aerospace Database |