Computational analysis of shock wave diffraction for convex slabs

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of the Brazilian Society of Mechanical Sciences and Engineering vol. 47, no. 7 (Jul 2025), p. 336
Autor principal: Banerjee, Debiprasad
Otros Autores: Halder, Pabitra
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The present study is centered on the vortexlets in the shock wave diffraction over three different slabs (60°, 90°, and 120°) for shock Mach numbers of 1.65, and 3.0. The third-order accurate implicit solver is built on advection upstream splitting along with least squares cell-based method and utilizes the benefits of refined mesh in the regions having high discontinuities. Vortexlet formation, pressure ratio and specific heat flux on the step wall, and movement of the separation point are some of the key aspects of the present analysis. For the numerical simulation of the moving shock, the Finite Volume Method is utilized to find the solutions of the governing equations. Vortexlets, secondary shock, embedded shock, contact surface, slipstream, expansion fan, and vortex are captured precisely. Apart from isopycnics; isobars, isotherms, and velocity contours are plotted as well. Our results emphasize the fact that there exists two types of vortexlets, which are different in their positions apart from their driving mechanisms.
ISSN:1678-5878
1806-3691
0100-7386
1678-3026
1678-4820
DOI:10.1007/s40430-025-05655-1
Fuente:Advanced Technologies & Aerospace Database