Fault-tolerant control for nonlinear time-delay systems using neural network observers

Salvato in:
Dettagli Bibliografici
Pubblicato in:International Journal of Dynamics and Control vol. 13, no. 1 (Jan 2025), p. 33
Autore principale: Rahimi, Farshad
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3255178996
003 UK-CbPIL
022 |a 2195-268X 
022 |a 2195-2698 
024 7 |a 10.1007/s40435-024-01536-y  |2 doi 
035 |a 3255178996 
045 2 |b d20250101  |b d20250131 
100 1 |a Rahimi, Farshad  |u Sahand University of Technology, Department of Electrical Engineering, Nowsud, Iran (GRID:grid.412345.5) (ISNI:0000 0000 9012 9027) 
245 1 |a Fault-tolerant control for nonlinear time-delay systems using neural network observers 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a This article addresses the problem of fault-tolerant control in nonlinear time-delay systems using adaptive dynamic programming. An adaptive neural network observer is developed to estimate unknown dynamics, system states, and actuator faults. This observer is then transformed into an augmented structure for optimal fault-tolerant control problem. The gains of this observer are determined by solving a linear matrix inequality. A new value function index is introduced to account for time-delay states, and control law is derived associated with this novel value function. The Hamilton–Jacobi–Bellman equation for this value function is solved via a critic neural network. Lyapunov functional analysis demonstrates that the closed-loop system remains uniformly ultimately bounded. Simulation results validate the proposed fault tolerant approach. The key contribution of this paper lies in incorporating time-delay states into the adaptive dynamic programming value function in the presence of actuator faults. 
653 |a Dynamic programming 
653 |a Adaptive systems 
653 |a Control theory 
653 |a Neural networks 
653 |a Linear matrix inequalities 
653 |a Fault tolerance 
653 |a Bellman theory 
653 |a Controllers 
653 |a Closed loops 
653 |a Functional analysis 
653 |a Control systems 
653 |a Methods 
653 |a Systems stability 
653 |a Algorithms 
653 |a Nonlinear systems 
653 |a Nonlinear control 
653 |a Time delay systems 
653 |a Feedback control 
653 |a Actuators 
773 0 |t International Journal of Dynamics and Control  |g vol. 13, no. 1 (Jan 2025), p. 33 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255178996/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255178996/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255178996/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch