On Enhanced Ratio-Type Estimators Using Quantile Regression for Finite Population Mean under Robustness and Empirical Validation

Guardado en:
Detalles Bibliográficos
Publicado en:Iranian Journal of Science vol. 49, no. 1 (Feb 2025), p. 169
Autor principal: Zohaib, Muhammad
Otros Autores: Latif, Waqas, Alam, Mubeen
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3255183986
003 UK-CbPIL
022 |a 2731-8095 
022 |a 2731-8109 
022 |a 1028-6276 
022 |a 2364-1819 
024 7 |a 10.1007/s40995-024-01700-1  |2 doi 
035 |a 3255183986 
045 2 |b d20250101  |b d20250331 
084 |a 168334  |2 nlm 
100 1 |a Zohaib, Muhammad  |u Government College University, Department of Statistics, Faisalabad, Pakistan (GRID:grid.411786.d) (ISNI:0000 0004 0637 891X) 
245 1 |a On Enhanced Ratio-Type Estimators Using Quantile Regression for Finite Population Mean under Robustness and Empirical Validation 
260 |b Springer Nature B.V.  |c Feb 2025 
513 |a Journal Article 
520 3 |a When the conditions of traditional regression analysis aren't met, an alternative method called quantile regression is utilized to estimate the value of the study variable across different quantiles of the distribution. This study proposes leveraging quantile regression information to develop ratio-type estimators for the finite population mean, particularly under robust measures of auxiliary variables in simple random sampling (SRS) without replacement. The performance of these proposed families of estimators is compared with existing studies using metrics such as mean squared error (MSE) equations and percentage relative efficiency (PRE). Additionally, this article incorporates simulation studies. Moreover, various real-world datasets are considered for empirical investigation to validate the theoretical findings. 
653 |a Mean square errors 
653 |a Kurtosis 
653 |a Datasets 
653 |a Estimates 
653 |a Random variables 
653 |a Statistical sampling 
653 |a Adultery 
653 |a Quantiles 
653 |a Variables 
653 |a Regression analysis 
653 |a Estimators 
653 |a Random sampling 
653 |a Economic 
700 1 |a Latif, Waqas  |u Government College University, Department of Statistics, Faisalabad, Pakistan (GRID:grid.411786.d) (ISNI:0000 0004 0637 891X) 
700 1 |a Alam, Mubeen  |u The University of Faisalabad, Department of Mathematics, Faisalabad, Pakistan (GRID:grid.444767.2) (ISNI:0000 0004 0607 1811) 
773 0 |t Iranian Journal of Science  |g vol. 49, no. 1 (Feb 2025), p. 169 
786 0 |d ProQuest  |t ABI/INFORM Trade & Industry 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255183986/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255183986/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255183986/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch