An intent recognition pipeline for conversational AI

Guardat en:
Dades bibliogràfiques
Publicat a:International Journal of Information Technology vol. 16, no. 2 (Feb 2024), p. 731
Autor principal: Chandrakala, C. B.
Altres autors: Bhardwaj, Rohit, Pujari, Chetana
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3255216487
003 UK-CbPIL
022 |a 2511-2104 
022 |a 2511-2112 
022 |a 0973-5658 
024 7 |a 10.1007/s41870-023-01642-8  |2 doi 
035 |a 3255216487 
045 2 |b d20240201  |b d20240229 
084 |a 241632  |2 nlm 
100 1 |a Chandrakala, C. B.  |u Manipal Academy of Higher Education, Department of Information and Communication Technology, Manipal Institute of Technology, Manipal, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193) 
245 1 |a An intent recognition pipeline for conversational AI 
260 |b Springer Nature B.V.  |c Feb 2024 
513 |a Journal Article 
520 3 |a Natural Language Processing (NLP) is one of the Artificial Intelligence applications that is entitled to allow computers to process and understand human language. These models are utilized to analyze large volumes of text and also support aspects like text summarization, language translation, context modeling, and sentiment analysis. Natural language, a subset of Natural Language Understanding (NLU), turns natural language into structured data. NLU accomplishes intent classification and entity extraction. The paper focuses on a pipeline to maximize the coverage of a conversational AI (chatbot) by extracting maximum meaningful intents from a data corpus. A conversational AI can best answer queries with respect to the dataset if it is trained on the maximum number of intents that can be gathered from the dataset which is what we focus on getting in this paper. The higher the intent we gather from the dataset, the more of the dataset we cover in training the conversational AI. The pipeline is modularized into three broad categories - Gathering the intents from the corpus, finding misspellings and synonyms of the intents, and finally deciding the order of intents to be picked up for training any classifier ML model. Several heuristic and machine-learning approaches have been considered for optimum results. For finding misspellings and synonyms, they are extracted through text vector neural network-based algorithms. Then the system concludes with a suggestive priority list of intents that should be fed to a classification model. In the end, an example of three intents from the corpus is picked, and their order is suggested for the optimum functioning of the pipeline. This paper attempts to pick intents in descending order of their coverage in the corpus in the most optimal way possible. 
653 |a Customer services 
653 |a Deep learning 
653 |a Datasets 
653 |a Classification 
653 |a Computerized corpora 
653 |a Corpus linguistics 
653 |a Machine learning 
653 |a Optimization 
653 |a Synonyms 
653 |a Summarization 
653 |a Heuristic 
653 |a Conversational artificial intelligence 
653 |a Language translation 
653 |a Chatbots 
653 |a Artificial intelligence 
653 |a Human-computer interaction 
653 |a Neural networks 
653 |a Sentiment analysis 
653 |a Natural language processing 
653 |a Structured data 
653 |a Queries 
653 |a Conversation 
653 |a Language 
653 |a Computers 
653 |a Training 
653 |a Extraction 
653 |a Translation 
700 1 |a Bhardwaj, Rohit  |u Manipal Academy of Higher Education, Department of Information and Communication Technology, Manipal Institute of Technology, Manipal, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193) 
700 1 |a Pujari, Chetana  |u Manipal Academy of Higher Education, Department of Information and Communication Technology, Manipal Institute of Technology, Manipal, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193) 
773 0 |t International Journal of Information Technology  |g vol. 16, no. 2 (Feb 2024), p. 731 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255216487/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255216487/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255216487/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch