Application of Multimedia Information Processing in the Prediction of Geotechnical Parameters

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Cases on Information Technology vol. 27, no. 1 (2025), p. 1-22
Autor principal: Ma, Lijuan
Publicado:
IGI Global
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3255274535
003 UK-CbPIL
022 |a 1548-7717 
022 |a 1548-7725 
022 |a 1098-8580 
022 |a 1537-937X 
024 7 |a 10.4018/JCIT.388930  |2 doi 
035 |a 3255274535 
045 2 |b d20250101  |b d20250331 
084 |a 54251  |2 nlm 
100 1 |a Ma, Lijuan  |u Anyang Vocational and Technical College, China 
245 1 |a Application of Multimedia Information Processing in the Prediction of Geotechnical Parameters 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a Key performance parameters of geotechnical materials significantly impact engineering design and construction. To address challenges in measuring certain parameters, this study proposed a prediction method based on multimedia information processing and deep learning. Acoustic emission and computed tomography scan data was processed to extract features related to Poisson's ratio, the void ratio, the density, and the compression modulus of peat soil. A gated recurrent unit neural network optimized by the particle swarm optimization algorithm was employed for parameter prediction. The results showed that the “particle swarm optimization-gated recurrent unit” model effectively predicted these parameters, with the best performance in predicting the compression modulus and the weakest for the void ratio. This approach provides a novel and reliable method for acquiring and verifying geotechnical parameters. 
653 |a Soils 
653 |a Data processing 
653 |a Particle swarm optimization 
653 |a Information processing 
653 |a Tomography 
653 |a Deep learning 
653 |a Poisson's ratio 
653 |a Optimization 
653 |a Function words 
653 |a Void ratio 
653 |a Machine learning 
653 |a Medical imaging 
653 |a Compression 
653 |a Recurrent 
653 |a Geology 
653 |a Multimedia 
653 |a Peat 
653 |a Neural networks 
653 |a Infrastructure 
653 |a Artificial intelligence 
653 |a Design engineering 
653 |a Predictions 
653 |a Computed tomography 
653 |a Decision making 
653 |a Engineering 
653 |a Algorithms 
653 |a Acoustic emission 
653 |a Acoustics 
653 |a Information technology 
653 |a Parameters 
653 |a X-rays 
773 0 |t Journal of Cases on Information Technology  |g vol. 27, no. 1 (2025), p. 1-22 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255274535/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255274535/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch