A Hybrid Deep Learning Framework for Intrusion Detection in Database Systems Using Brown-Bear Optimization and Tunicate Swarm Algorithm
Guardado en:
| Publicado en: | Journal of Database Management vol. 36, no. 1 (2025), p. 1-26 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , , |
| Publicado: |
IGI Global
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Protection of networks from changing cyberthreats depends critically on intrusion detection. This article presents a hybrid deep learning framework using a tunicate swarm algorithm and brown-bear optimization for intrusion detection. The Tunicate Swarm Algorithm (TSA) was utilized for hyperparameter tuning; the Brown-Bear Optimization Algorithm (BBOA) was employed for feature selection, therefore lowering the dataset from 41 to 25 features. After five epochs, the model tested on the NSL-KDD dataset achieves 98% accuracy. Comparative study using conventional models showed that the suggested framework improved accuracy and loss reduction, therefore stressing its possibilities to improve intrusion detection systems. |
|---|---|
| ISSN: | 1063-8016 1533-8010 1047-9430 |
| DOI: | 10.4018/JDM.388847 |
| Fuente: | ABI/INFORM Global |