Matheuristic co-evolutionary algorithm for solving the integrated processing and transportation scheduling problem with processing-transportation composite robots

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Computational Design and Engineering vol. 12, no. 9 (Sep 2025), p. 131
Hlavní autor: Zhang, Meizhou
Další autoři: Zhou, Min, Zhang, Liping, Zhang, Zikai
Vydáno:
Oxford University Press
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3255418116
003 UK-CbPIL
022 |a 2288-5048 
024 7 |a 10.1093/jcde/qwaf089  |2 doi 
035 |a 3255418116 
045 2 |b d20250901  |b d20250930 
100 1 |a Zhang, Meizhou  |u Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science and Technology , 947 Heping Avenue, Wuhan, Hubei 430081 , China 
245 1 |a Matheuristic co-evolutionary algorithm for solving the integrated processing and transportation scheduling problem with processing-transportation composite robots 
260 |b Oxford University Press  |c Sep 2025 
513 |a Journal Article 
520 3 |a With the rapid development of robotic technology, a new type of robot, the processing-transportation composite robot (PTCR), has been widely applied in manufacturing systems. It has multiple functions, such as transferring jobs between machines and processing tasks, thereby greatly enhancing production flexibility. Hence, this study investigates the integrated processing and transportation scheduling problem with PTCRs (IPTS-PTCRs) in a job shop environment to minimise the makespan. A mixed-integer linear programming (MILP) model is first designed to define this complex problem. Then, a hybrid algorithm incorporating mathematical programming and a collaborative evolutionary mechanism is designed to solve the model, named the matheuristic co-evolutionary algorithm (MCEA). This algorithm combines multiple heuristics with a random method, resulting in a two-stage collaborative initialisation that generates a high-quality and diverse initial population. A novel collaborative evolutionary mechanism is incorporated into the crossover and mutation operators to enhance interactions between sub-populations. A novel local search based on adaptive decomposed MILP is developed to conduct an in-depth exploration of the best solution. Finally, multiple sets of experiments are conducted to validate the effectiveness of the proposed MILP model and MCEA. The experimental results show that the MILP model can obtain optimal solutions for small-scale instances. The improved components enhance the average performance of the MCEA by 44.1%. The proposed MCEA outperforms five state-of-the-art algorithms in terms of numerical analysis, statistical testing, differential comparison, and stability evaluation. 
653 |a Mathematical programming 
653 |a Linear programming 
653 |a Scheduling 
653 |a Robots 
653 |a Collaboration 
653 |a Mixed integer 
653 |a Integer programming 
653 |a Operators (mathematics) 
653 |a Genetic algorithms 
653 |a Numerical analysis 
653 |a Evolutionary algorithms 
700 1 |a Zhou, Min  |u Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology , 947 Heping Avenue, Wuhan, Hubei 430081 , China 
700 1 |a Zhang, Liping  |u Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology , 947 Heping Avenue, Wuhan, Hubei 430081 , China 
700 1 |a Zhang, Zikai  |u Precision Manufacturing Institute, Wuhan University of Science and Technology , 947 Heping Avenue, Wuhan, Hubei 430081 , China 
773 0 |t Journal of Computational Design and Engineering  |g vol. 12, no. 9 (Sep 2025), p. 131 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255418116/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255418116/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch