Balanced parallel triangle enumeration with an adaptive algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Distributed and Parallel Databases vol. 42, no. 1 (Mar 2024), p. 103
Autor principal: Farouzi, Abir
Otros Autores: Zhou, Xiantian, Bellatreche, Ladjel, Malki, Mimoun, Ordonez, Carlos
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3255419737
003 UK-CbPIL
022 |a 0926-8782 
022 |a 1573-7578 
024 7 |a 10.1007/s10619-023-07437-x  |2 doi 
035 |a 3255419737 
045 2 |b d20240301  |b d20240331 
100 1 |a Farouzi, Abir  |u ISAE-ENSMA, Poitiers, France (GRID:grid.434217.7) (ISNI:0000 0001 2178 9782); Ecole Supérieure en Informatique, Sidi Bel Abbès, Algeria (GRID:grid.434217.7) 
245 1 |a Balanced parallel triangle enumeration with an adaptive algorithm 
260 |b Springer Nature B.V.  |c Mar 2024 
513 |a Journal Article 
520 3 |a Triangle enumeration is a foundation brick for solving harder graph problems related to social networks, the Internet and transportation, to name a few applications. This problem is well studied in the theory literature, but remains an open problem with big data. In this paper, we defend the idea of solving triangle enumeration with SQL queries evaluating the steps of a new adaptive algorithm with linear speedup. Such SQL approach provides scalability beyond RAM limits, automatic parallel processing and more importantly: linear speedup as more machines are added. We present theory results and experimental validation showing our solution works well with large graphs analyzed on a parallel cluster with many machines, producing a balanced workload even with highly skewed degree vertices. We consider two types of distributed systems: (1) a parallel DBMS that evaluates SQL queries, and (2) a parallel HPC cluster calling the MPI library (called via Python). Extensive benchmark experiments with large graphs show our SQL solution offers many advantages over MPI and competing graph analytic systems. 
653 |a Parallel processing 
653 |a Big Data 
653 |a Graphs 
653 |a Apexes 
653 |a Infrastructure 
653 |a Social networks 
653 |a Queries 
653 |a Graph representations 
653 |a Optimization 
653 |a Data processing 
653 |a Architecture 
653 |a Enumeration 
653 |a Algorithms 
653 |a Clusters 
653 |a Query languages 
653 |a Adaptive algorithms 
700 1 |a Zhou, Xiantian  |u University of Houston, Houston, USA (GRID:grid.266436.3) (ISNI:0000 0004 1569 9707) 
700 1 |a Bellatreche, Ladjel  |u ISAE-ENSMA, Poitiers, France (GRID:grid.434217.7) (ISNI:0000 0001 2178 9782) 
700 1 |a Malki, Mimoun  |u Ecole Supérieure en Informatique, Sidi Bel Abbès, Algeria (GRID:grid.434217.7) 
700 1 |a Ordonez, Carlos  |u University of Houston, Houston, USA (GRID:grid.266436.3) (ISNI:0000 0004 1569 9707) 
773 0 |t Distributed and Parallel Databases  |g vol. 42, no. 1 (Mar 2024), p. 103 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255419737/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255419737/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255419737/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch