PECC: parallel expansion based on clustering coefficient for efficient graph partitioning

Gardado en:
Detalles Bibliográficos
Publicado en:Distributed and Parallel Databases vol. 42, no. 4 (Dec 2024), p. 447
Autor Principal: Shi, Chengcheng
Outros autores: Xie, Zhenping
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3255419858
003 UK-CbPIL
022 |a 0926-8782 
022 |a 1573-7578 
024 7 |a 10.1007/s10619-024-07442-8  |2 doi 
035 |a 3255419858 
045 2 |b d20241201  |b d20241231 
100 1 |a Shi, Chengcheng  |u Jiangnan University, School of Artificial Intelligence and Computer Science, Wuxi, China (GRID:grid.258151.a) (ISNI:0000 0001 0708 1323); Jiangnan University, Jiangsu Key University Laboratory of Software and Media Technology Under Human-Computer Cooperation, Wuxi, China (GRID:grid.258151.a) (ISNI:0000 0001 0708 1323) 
245 1 |a PECC: parallel expansion based on clustering coefficient for efficient graph partitioning 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a In the pursuit of graph processing performance, graph partitioning, as a crucial preprocessing step, has been widely concerned. Based on an in-depth analysis of Neighbor Expansion (NE) graph partitioning algorithm, we propose Parallel Expansion based on Clustering Coefficient (PECC). Firstly, to address the partition disturbance caused by internal structural changes during the process of vertex neighborhood expansion in the traditional NE algorithm, we perform a formal redefinition of the vertex state during the partitioning process and introduce the concept of clustering coefficient. Then, PECC uses the clustering coefficient as a metric to measure the closeness between vertices and potential partitions. Based on this metric, a novel parallel partitioning strategy in the distributed environment is proposed. This strategy consists of two core steps: the expansion process and the allocation process. Through two steps, PECC can effectively improve the operating efficiency of programs and significantly reduce the partitioning time. In addition, to ensure data consistency during parallel expansion, we adopt a distributed locking engine to solve concurrency management problems. Our evaluations on large real-world graphs show that in many cases, PECC achieves a balance between partitioning quality and computational efficiency. Finally, we show that PECC integrated on GraphX outperforms the built-in native algorithms. 
653 |a Algorithms 
653 |a Apexes 
653 |a Graphs 
653 |a Heuristic 
653 |a Clustering 
653 |a Partitioning 
653 |a Social networks 
653 |a Proteins 
700 1 |a Xie, Zhenping  |u Jiangnan University, School of Artificial Intelligence and Computer Science, Wuxi, China (GRID:grid.258151.a) (ISNI:0000 0001 0708 1323); Jiangnan University, Jiangsu Key University Laboratory of Software and Media Technology Under Human-Computer Cooperation, Wuxi, China (GRID:grid.258151.a) (ISNI:0000 0001 0708 1323) 
773 0 |t Distributed and Parallel Databases  |g vol. 42, no. 4 (Dec 2024), p. 447 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255419858/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255419858/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255419858/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch