Scalable top-k query on information networks with hierarchical inheritance relations

Guardado en:
Detalles Bibliográficos
Publicado en:Distributed and Parallel Databases vol. 42, no. 1 (Mar 2024), p. 1
Autor principal: Wu, Fubao
Otros Autores: Gao, Lixin
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3255419898
003 UK-CbPIL
022 |a 0926-8782 
022 |a 1573-7578 
024 7 |a 10.1007/s10619-023-07432-2  |2 doi 
035 |a 3255419898 
045 2 |b d20240301  |b d20240331 
100 1 |a Wu, Fubao  |u University of Massachusetts Amherst, Department of Electrical and Computer Engineering, Amherst, USA (GRID:grid.266683.f) (ISNI:0000 0001 2166 5835) 
245 1 |a Scalable top-<i>k</i> query on information networks with hierarchical inheritance relations 
260 |b Springer Nature B.V.  |c Mar 2024 
513 |a Journal Article 
520 3 |a Graph query, pattern mining and knowledge discovery become challenging on large-scale heterogeneous information networks (HINs). State-of-the-art techniques involving path propagation mainly focus on the inference of node labels, and neighborhood structures. However, entity links in the real world also contain rich hierarchical inheritance relations. For example, the vulnerability of a product version is likely to be inherited from its older versions. Taking advantage of the hierarchical inheritances can potentially improve the quality of query results. Motivated by this, we explore hierarchical inheritance relations between entities and formulate the problem of graph query on HINs with hierarchical inheritance relations. We propose a graph query search algorithm by decomposing the original query graph into multiple star queries and applying a star query algorithm to each star query. Candidates from each star query result are then constructed for the final top-k query answer to the original query. To efficiently obtain the graph query result from a large-scale HIN, we design a bound-based pruning technique by using the uniform cost search to prune the search spaces. We implement our algorithm in Spark GraphX to test the effectiveness and efficiency on synthetic and real-world datasets. Compared with two state-of-the-art graph query algorithms, our algorithm can effectively obtain more accurate results and competitive performance. 
653 |a Meetings 
653 |a Search algorithms 
653 |a Algorithms 
653 |a Queries 
653 |a Pattern analysis 
653 |a Inheritances 
700 1 |a Gao, Lixin  |u University of Massachusetts Amherst, Department of Electrical and Computer Engineering, Amherst, USA (GRID:grid.266683.f) (ISNI:0000 0001 2166 5835) 
773 0 |t Distributed and Parallel Databases  |g vol. 42, no. 1 (Mar 2024), p. 1 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255419898/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255419898/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255419898/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch