Range constrained group query on attribute social graph

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Distributed and Parallel Databases vol. 42, no. 3 (Sep 2024), p. 337
المؤلف الرئيسي: Chen, Zijun
مؤلفون آخرون: Shao, Wenwen, Liu, Wenyuan
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3255420270
003 UK-CbPIL
022 |a 0926-8782 
022 |a 1573-7578 
024 7 |a 10.1007/s10619-024-07439-3  |2 doi 
035 |a 3255420270 
045 2 |b d20240901  |b d20240930 
100 1 |a Chen, Zijun  |u Yanshan University, School of Information Science and Engineering, Qinhuangdao, China (GRID:grid.413012.5) (ISNI:0000 0000 8954 0417); The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao, China (GRID:grid.413012.5) 
245 1 |a Range constrained group query on attribute social graph 
260 |b Springer Nature B.V.  |c Sep 2024 
513 |a Journal Article 
520 3 |a The geo-social group query is to find a group of users for the query point based on location and social information. In this paper, we propose the range constrained group query (RCGQ) on attribute social graph, considering social information, spatial information, keyword information and user group size. We prove that RCGQ problem is NP-hard. For the query, we propose four methods, namely the combination-based group expansion method (COM), the single–multi group expansion method (S–M), the single–single group expansion method (S–S) and the multi–multi group expansion method (M–M). The first method is based on combination. The last three methods are based on social relations. COM uses combination to find user groups. The social relations are not used in the combinatorial process. S–M, S–S and M–M use the social relations to find user groups. Pruning strategies are proposed for the four methods. Finally, experiments demonstrate the efficiency of the proposed methods. 
653 |a Approximation 
653 |a Spatial data 
653 |a Algorithms 
653 |a Queries 
653 |a Combinatorial analysis 
653 |a Constraints 
653 |a Keywords 
653 |a User groups 
653 |a Social networks 
653 |a Efficiency 
700 1 |a Shao, Wenwen  |u Yanshan University, School of Information Science and Engineering, Qinhuangdao, China (GRID:grid.413012.5) (ISNI:0000 0000 8954 0417); The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao, China (GRID:grid.413012.5) 
700 1 |a Liu, Wenyuan  |u Yanshan University, School of Information Science and Engineering, Qinhuangdao, China (GRID:grid.413012.5) (ISNI:0000 0000 8954 0417); The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao, China (GRID:grid.413012.5) 
773 0 |t Distributed and Parallel Databases  |g vol. 42, no. 3 (Sep 2024), p. 337 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255420270/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255420270/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255420270/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch