Improved data clustering methods and integrated A-FP algorithm for crop yield prediction

Guardat en:
Dades bibliogràfiques
Publicat a:Distributed and Parallel Databases vol. 41, no. 1 (Jun 2023), p. 117
Autor principal: Vani, P. Suvitha
Altres autors: Rathi, S.
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3255421025
003 UK-CbPIL
022 |a 0926-8782 
022 |a 1573-7578 
024 7 |a 10.1007/s10619-021-07350-1  |2 doi 
035 |a 3255421025 
045 2 |b d20230601  |b d20230630 
100 1 |a Vani, P. Suvitha  |u Sri Shakthi Institute of Engineering & Technology, Department of Computer Science and Engineering, Coimbatore, India (GRID:grid.252262.3) (ISNI:0000 0001 0613 6919) 
245 1 |a Improved data clustering methods and integrated A-FP algorithm for crop yield prediction 
260 |b Springer Nature B.V.  |c Jun 2023 
513 |a Journal Article 
520 3 |a Big data analysis is the process of gathering, managing and analyzing a large volume of data to determine patterns and other valuable information. Agricultural data can be a significant area of big data applications. The big data analysis for agricultural data can comprise the various data from both internal systems and outside sources like weather data, soil data, and crop data. Though big data analysis has led to advances in different industries, it has not yet been extensively used in agriculture. Several machine learning techniques are developed to cluster the data for the prediction of crop yield. However, it has low accuracy and low quality of the clustering. To improve clustering accuracy with less complexity, a Proximity Likelihood Maximization Data Clustering (PLMDC) technique is developed for both sparse and densely distributed agricultural big data to enhance the accuracy of crop yield prediction for farmers. In this process, unnecessary data is cleansed from the sparse and dense based agricultural data using a logical linear regression model. After that, the presented clustering method is executed depending on the similarity and weight-based Manhattan distance. The genetic algorithm (GA) is applied with a good fitness function to select the features from the clustered data. Finally, the decision support system is computed by the A-FP growth algorithm to predict the crop yields according to their selected features such as weather features and crop features. The results of the proposed PLMDC technique are better in case of clustering accuracy of both spare and densely distributed data with minimum time and space complexity. Based on the results observations, the PLMDC technique is more efficient than the existing methods. 
610 4 |a Department of Agriculture 
651 4 |a United States--US 
651 4 |a India 
653 |a Accuracy 
653 |a Agriculture 
653 |a Data analysis 
653 |a Crop yield 
653 |a Decision support systems 
653 |a Agricultural production 
653 |a Big Data 
653 |a Genetic algorithms 
653 |a Clustering 
653 |a Regression models 
653 |a Decision making 
653 |a Neural networks 
653 |a Complexity 
653 |a Machine learning 
653 |a Meteorological data 
700 1 |a Rathi, S.  |u Government College of Technology, Department of Computer Science and Engineering, Coimbatore, India (GRID:grid.252262.3) (ISNI:0000 0001 0613 6919) 
773 0 |t Distributed and Parallel Databases  |g vol. 41, no. 1 (Jun 2023), p. 117 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255421025/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255421025/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255421025/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch