GTraclus: a novel algorithm for local trajectory clustering on GPUs

Na minha lista:
Detalhes bibliográficos
Publicado no:Distributed and Parallel Databases vol. 41, no. 3 (Sep 2023), p. 467
Autor principal: Mustafa, Hamza
Outros Autores: Barrus, Clark, Leal, Eleazar, Gruenwald, Le
Publicado em:
Springer Nature B.V.
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3255421062
003 UK-CbPIL
022 |a 0926-8782 
022 |a 1573-7578 
024 7 |a 10.1007/s10619-023-07429-x  |2 doi 
035 |a 3255421062 
045 2 |b d20230901  |b d20230930 
100 1 |a Mustafa, Hamza  |u University of Minnesota Duluth, Department of Computer Science, Duluth, USA (GRID:grid.266744.5) (ISNI:0000 0000 9540 9781) 
245 1 |a GTraclus: a novel algorithm for local trajectory clustering on GPUs 
260 |b Springer Nature B.V.  |c Sep 2023 
513 |a Journal Article 
520 3 |a Due to the high availability of location-based sensors like GPS, it has been possible to collect large amounts of spatio-temporal data in the form of trajectories, each of which is a sequence of spatial locations that a moving object occupies in space as time progresses. Many applications, such as intelligent transportation systems and urban planning, can benefit from clustering the trajectories of cars in each locality of a city in order to learn about traffic behavior in each neighborhood. However, the immense and ever-increasing volume of trajectory data and the concept drift present in city traffic constitute scalability challenges that have not been addressed. In order to fill this gap, we propose the first GPU algorithm for local trajectory clustering, called GTraclus. We present a parallelized trajectory partitioning algorithm which simplifies trajectories into line segments using the Minimum Description Length (MDL) principle. We evaluated our proposed algorithm using two large real-life trajectory datasets and compared it against a multicore CPU version, which we call MC-Traclus, of the popular trajectory clustering algorithm, Traclus; our experiments showed that GTraclus had on average up to 24×<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="10619_2023_7429_Article_IEq1.gif" /> faster execution time when compared against MC-Traclus. 
653 |a Algorithms 
653 |a Urban planning 
653 |a Datasets 
653 |a Similarity measures 
653 |a Clustering 
653 |a Intelligent transportation systems 
653 |a Trajectories 
653 |a Workshops 
653 |a Spatiotemporal data 
653 |a Interfaces 
700 1 |a Barrus, Clark  |u University of Oklahoma, School of Computer Science, Norman, USA (GRID:grid.266900.b) (ISNI:0000 0004 0447 0018) 
700 1 |a Leal, Eleazar  |u University of Minnesota Duluth, Department of Computer Science, Duluth, USA (GRID:grid.266744.5) (ISNI:0000 0000 9540 9781) 
700 1 |a Gruenwald, Le  |u University of Oklahoma, School of Computer Science, Norman, USA (GRID:grid.266900.b) (ISNI:0000 0004 0447 0018) 
773 0 |t Distributed and Parallel Databases  |g vol. 41, no. 3 (Sep 2023), p. 467 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255421062/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255421062/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255421062/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch