A hybrid machine learning approach to identify coronary diseases using feature selection mechanism on heart disease dataset

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Distributed and Parallel Databases vol. 41, no. 1 (Jun 2023), p. 1
मुख्य लेखक: Doppala, Bhanu Prakash
अन्य लेखक: Bhattacharyya, Debnath, Chakkravarthy, Midhun, Kim, Tai-hoon
प्रकाशित:
Springer Nature B.V.
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3255421161
003 UK-CbPIL
022 |a 0926-8782 
022 |a 1573-7578 
024 7 |a 10.1007/s10619-021-07329-y  |2 doi 
035 |a 3255421161 
045 2 |b d20230601  |b d20230630 
100 1 |a Doppala, Bhanu Prakash  |u Lincoln University College, Department of Computer Science and Multimedia, Petaling Jaya, Malaysia (GRID:grid.512179.9) (ISNI:0000 0004 1781 393X) 
245 1 |a A hybrid machine learning approach to identify coronary diseases using feature selection mechanism on heart disease dataset 
260 |b Springer Nature B.V.  |c Jun 2023 
513 |a Journal Article 
520 3 |a Coronary illness can be treated as one of the major causes for mortality globally. On-time and Precise conclusion on the type of disease is significant for therapy and breakdown expectancy. Research scientists are working rigorously in their respective fields to reduce the death rate. Even though lot of research took place on this area still there is a scope for increasing the prediction accuracy. The fundamental point of our proposed work is to build up a hybrid methodology using genetic algorithm (GA) with (RBF) radial basis function (GA-RBF) for the detection of coronary sickness with increased accuracy using the feature selection mechanism. The proposed system performance achieved an accuracy of 85.40% using 14 attributes, and the prediction accuracy increased to 94.20% with nine characteristics where the functionality of the proposed system performed much better after attribute reduction. 
651 4 |a India 
653 |a Machine learning 
653 |a Asian people 
653 |a Accuracy 
653 |a Fatalities 
653 |a Datasets 
653 |a Regression analysis 
653 |a Genetic algorithms 
653 |a Radial basis function 
653 |a Artificial intelligence 
653 |a Cardiovascular disease 
653 |a Researchers 
653 |a Feature selection 
653 |a Illnesses 
653 |a Algorithms 
653 |a Heart 
653 |a Heart diseases 
700 1 |a Bhattacharyya, Debnath  |u K L Deemed to be University, KLEF, Department of Computer Science and Engineering, Guntur, India (GRID:grid.512179.9) 
700 1 |a Chakkravarthy, Midhun  |u Lincoln University College, Department of Computer Science and Multimedia, Petaling Jaya, Malaysia (GRID:grid.512179.9) (ISNI:0000 0004 1781 393X) 
700 1 |a Kim, Tai-hoon  |u Beijing Jiaotong University, School of Economics and Management, Beijing, China (GRID:grid.181531.f) (ISNI:0000 0004 1789 9622) 
773 0 |t Distributed and Parallel Databases  |g vol. 41, no. 1 (Jun 2023), p. 1 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255421161/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255421161/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255421161/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch