Modeling of chemical-looping combustion process of methane with nickel-based oxygen carrier
محفوظ في:
| الحاوية / القاعدة: | Experimental and Computational Multiphase Flow vol. 6, no. 2 (Jun 2024), p. 180 |
|---|---|
| المؤلف الرئيسي: | |
| مؤلفون آخرون: | , , , |
| منشور في: |
Springer Nature B.V.
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | Citation/Abstract Full Text - PDF |
| الوسوم: |
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3255547671 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2661-8869 | ||
| 022 | |a 2661-8877 | ||
| 024 | 7 | |a 10.1007/s42757-023-0161-2 |2 doi | |
| 035 | |a 3255547671 | ||
| 045 | 2 | |b d20240601 |b d20240630 | |
| 100 | 1 | |a Zhang, Kaige |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) | |
| 245 | 1 | |a Modeling of chemical-looping combustion process of methane with nickel-based oxygen carrier | |
| 260 | |b Springer Nature B.V. |c Jun 2024 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a The chemical-looping combustion of methane in a three-dimensional cylindrical fuel reactor is numerically studied using the developed multiphase particle-in-cell reactive model, featuring the multi-phase flow, heat transfer, reduction of oxygen carriers, and particle shrinkage. After model validation, the general flow patterns, and the thermophysical properties of oxygen carriers (e.g., temperature, heat transfer coefficient) and gas phase (e.g., temperature, density, thermal conductivity, specific heat capacity, and viscosity) are comprehensively studied with the discussion on several crucial operating parameters. The results show that bubble dynamics (e.g., generation, rising, coalescence, and eruption) induce the segregation of small- and large-mass particles. CH4 is thoroughly converted in a very short distance above the bottom distributor while CO and H2 increase above the bottom distributor and then decrease axially. The temperature of particles ranges from 1275 to 1295 K, leading to a 20 K temperature difference in the bed. The heat transfer coefficient (HTC) of particles is in the range of 50–150 W/(m2·K). Increasing the investigated operating parameters (i.e., superficial gas velocity, methane ratio, and wall temperature) enlarges the particle properties (i.e., temperature, HTC) and most of the gas properties (i.e., temperature, thermal conductivity, specific capacity, and viscosity), but decreases the gas density. The findings shed light on the reactor design and process control of the chemical-looping combustion systems. | |
| 653 | |a Heat transfer | ||
| 653 | |a Finite volume method | ||
| 653 | |a Simulation | ||
| 653 | |a Velocity | ||
| 653 | |a Viscosity | ||
| 653 | |a Gases | ||
| 653 | |a Fossil fuels | ||
| 653 | |a Power plants | ||
| 653 | |a Chemical reactions | ||
| 653 | |a Process controls | ||
| 653 | |a Methane | ||
| 653 | |a Nickel | ||
| 653 | |a Heat conductivity | ||
| 653 | |a Industrial plant emissions | ||
| 653 | |a Efficiency | ||
| 653 | |a Flow distribution | ||
| 653 | |a Thermal conductivity | ||
| 653 | |a Oxygen | ||
| 653 | |a Multiphase flow | ||
| 653 | |a Distributors | ||
| 653 | |a Wall temperature | ||
| 653 | |a Fluidized bed combustion | ||
| 653 | |a Temperature gradients | ||
| 653 | |a Heat transfer coefficients | ||
| 653 | |a Gas density | ||
| 653 | |a Thermophysical properties | ||
| 653 | |a Parameters | ||
| 653 | |a Vapor phases | ||
| 653 | |a Reactor design | ||
| 700 | 1 | |a Liang, Jin |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) | |
| 700 | 1 | |a Liu, Huili |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) | |
| 700 | 1 | |a Bao, Guirong |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) | |
| 700 | 1 | |a Wang, Hua |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) | |
| 773 | 0 | |t Experimental and Computational Multiphase Flow |g vol. 6, no. 2 (Jun 2024), p. 180 | |
| 786 | 0 | |d ProQuest |t Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3255547671/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3255547671/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |