Modeling of chemical-looping combustion process of methane with nickel-based oxygen carrier

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Experimental and Computational Multiphase Flow vol. 6, no. 2 (Jun 2024), p. 180
المؤلف الرئيسي: Zhang, Kaige
مؤلفون آخرون: Liang, Jin, Liu, Huili, Bao, Guirong, Wang, Hua
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3255547671
003 UK-CbPIL
022 |a 2661-8869 
022 |a 2661-8877 
024 7 |a 10.1007/s42757-023-0161-2  |2 doi 
035 |a 3255547671 
045 2 |b d20240601  |b d20240630 
100 1 |a Zhang, Kaige  |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) 
245 1 |a Modeling of chemical-looping combustion process of methane with nickel-based oxygen carrier 
260 |b Springer Nature B.V.  |c Jun 2024 
513 |a Journal Article 
520 3 |a The chemical-looping combustion of methane in a three-dimensional cylindrical fuel reactor is numerically studied using the developed multiphase particle-in-cell reactive model, featuring the multi-phase flow, heat transfer, reduction of oxygen carriers, and particle shrinkage. After model validation, the general flow patterns, and the thermophysical properties of oxygen carriers (e.g., temperature, heat transfer coefficient) and gas phase (e.g., temperature, density, thermal conductivity, specific heat capacity, and viscosity) are comprehensively studied with the discussion on several crucial operating parameters. The results show that bubble dynamics (e.g., generation, rising, coalescence, and eruption) induce the segregation of small- and large-mass particles. CH4 is thoroughly converted in a very short distance above the bottom distributor while CO and H2 increase above the bottom distributor and then decrease axially. The temperature of particles ranges from 1275 to 1295 K, leading to a 20 K temperature difference in the bed. The heat transfer coefficient (HTC) of particles is in the range of 50–150 W/(m2·K). Increasing the investigated operating parameters (i.e., superficial gas velocity, methane ratio, and wall temperature) enlarges the particle properties (i.e., temperature, HTC) and most of the gas properties (i.e., temperature, thermal conductivity, specific capacity, and viscosity), but decreases the gas density. The findings shed light on the reactor design and process control of the chemical-looping combustion systems. 
653 |a Heat transfer 
653 |a Finite volume method 
653 |a Simulation 
653 |a Velocity 
653 |a Viscosity 
653 |a Gases 
653 |a Fossil fuels 
653 |a Power plants 
653 |a Chemical reactions 
653 |a Process controls 
653 |a Methane 
653 |a Nickel 
653 |a Heat conductivity 
653 |a Industrial plant emissions 
653 |a Efficiency 
653 |a Flow distribution 
653 |a Thermal conductivity 
653 |a Oxygen 
653 |a Multiphase flow 
653 |a Distributors 
653 |a Wall temperature 
653 |a Fluidized bed combustion 
653 |a Temperature gradients 
653 |a Heat transfer coefficients 
653 |a Gas density 
653 |a Thermophysical properties 
653 |a Parameters 
653 |a Vapor phases 
653 |a Reactor design 
700 1 |a Liang, Jin  |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) 
700 1 |a Liu, Huili  |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) 
700 1 |a Bao, Guirong  |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) 
700 1 |a Wang, Hua  |u Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) 
773 0 |t Experimental and Computational Multiphase Flow  |g vol. 6, no. 2 (Jun 2024), p. 180 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255547671/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255547671/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch