An automated quality assurance system with deep learning for small cube-ball phantom localization in noisy megavoltage images

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Journal of the Korean Physical Society vol. 84, no. 9 (May 2024), p. 729
मुख्य लेखक: Park, Min-Jae
अन्य लेखक: Lee, Gyemin, Kwak, Jungwon, Jeong, Chiyoung, Goh, YoungMoon, Kim, Sung-woo, Cho, Byung-Chul, Song, Si Yeol, Kim, Jong Hoon, Jung, Jinhong, Shin, Young Seob, Oh, Jungsu
प्रकाशित:
Springer Nature B.V.
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3255580573
003 UK-CbPIL
022 |a 0374-4884 
022 |a 1976-8524 
024 7 |a 10.1007/s40042-024-01040-8  |2 doi 
035 |a 3255580573 
045 2 |b d20240501  |b d20240531 
100 1 |a Park, Min-Jae  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
245 1 |a An automated quality assurance system with deep learning for small cube-ball phantom localization in noisy megavoltage images 
260 |b Springer Nature B.V.  |c May 2024 
513 |a Journal Article 
520 3 |a To enhance efficiency and minimize errors, we automated the quality assurance (QA) process in radiation oncology, specifically laser localization. Additionally, we explored the use of a convolutional neural network (CNN) to enhance the detection of small cube-ball phantoms in noisy images. Laser localizations were measured manually on the acquired images. To automate the QA workflow, we developed a Linux server equipped with database and web servers. Digital Imaging and Communications in Medicine (DICOM) files were retrieved 40 times for 10 linear accelerators (LINACs). The center of the cube-ball phantoms was estimated through Gaussian fitting. We applied CNN using 6,968 stored results to improve the estimation performance in noisy megavoltage (MV) images. Subsequently, both analysis time and accuracy were compared. Our hospital has been employing the automated QA system since 2018, notably reducing the time for laser localization from 30 min to just 1 min. The average and standard deviation (SD) of inter-observer variability in the X- and Y-axes were 0.06 ± 0.01 mm and 0.05 ± 0.01 mm, respectively. Absolute differences between manual assessment and Gaussian fitting presented average and SD values of 0.40 ± 0.51 mm and 0.23 ± 0.24 mm, respectively. In contrast, absolute differences between manual assessment and CNN presented average and SD values of 0.12 ± 0.10 mm and 0.11 ± 0.09 mm, respectively. Overall, the automated QA system significantly hastened procedures in our large hospital and improved the estimation of the cube-ball phantom’s position in noisy images through deep learning. 
653 |a Linear accelerators 
653 |a Deep learning 
653 |a Lasers 
653 |a Quality assurance 
653 |a Hospitals 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Medical imaging 
653 |a Quality control 
653 |a Oncology 
653 |a Image acquisition 
653 |a Automation 
653 |a Machine learning 
653 |a Localization 
653 |a Structured Query Language-SQL 
653 |a Servers 
653 |a Radiation therapy 
700 1 |a Lee, Gyemin  |u Seoul National University of Science and Technology, Department of Smart ICT Convergence Engineering, Seoul, Republic of Korea (GRID:grid.412485.e) (ISNI:0000 0000 9760 4919) 
700 1 |a Kwak, Jungwon  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
700 1 |a Jeong, Chiyoung  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
700 1 |a Goh, YoungMoon  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
700 1 |a Kim, Sung-woo  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
700 1 |a Cho, Byung-Chul  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
700 1 |a Song, Si Yeol  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
700 1 |a Kim, Jong Hoon  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
700 1 |a Jung, Jinhong  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
700 1 |a Shin, Young Seob  |u University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
700 1 |a Oh, Jungsu  |u University of Ulsan College of Medicine, Department of Nuclear Medicine, Asan Medical Center, Seoul, Republic of Korea (GRID:grid.267370.7) (ISNI:0000 0004 0533 4667) 
773 0 |t Journal of the Korean Physical Society  |g vol. 84, no. 9 (May 2024), p. 729 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255580573/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255580573/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255580573/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch