Walsh function-based numerical approach for nonlinear stochastic integral equations: Application to stochastic logistic models

Salvato in:
Dettagli Bibliografici
Pubblicato in:Boundary Value Problems vol. 2025, no. 1 (Dec 2025), p. 136
Autore principale: Paikaray, Prit Pritam
Altri autori: Beuria, Sanghamitra, Parida, Nigam Chandra, Izadi, Mohammad
Pubblicazione:
Hindawi Limited
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3255903925
003 UK-CbPIL
022 |a 1687-2762 
022 |a 1687-2770 
024 7 |a 10.1186/s13661-025-02129-0  |2 doi 
035 |a 3255903925 
045 2 |b d20251201  |b d20251231 
084 |a 130309  |2 nlm 
100 1 |a Paikaray, Prit Pritam  |u Gandhi Institute of Excellent Technocrats, Department of Basic Science and Humanities, Bhubaneswar, India 
245 1 |a Walsh function-based numerical approach for nonlinear stochastic integral equations: Application to stochastic logistic models 
260 |b Hindawi Limited  |c Dec 2025 
513 |a Journal Article 
520 3 |a The current research study proposes an efficient numerical method for obtaining an approximate solution to nonlinear stochastic integral equations implementing the collocation method and the Walsh operational matrices. Given the complexity of solving each integral equation exactly, we use a numerical approach that converts the equation into a system of algebraic equations, yielding an approximate solution. Through error analysis, the method is found to exhibit linear convergence, underscoring its efficiency. We offer numerical tests to show the accuracy and usefulness of the proposed approach. This work also demonstrates the applicability of the method to dealing with the stochastic logistic model. 
653 |a Calculus 
653 |a Growth models 
653 |a Integral equations 
653 |a Collocation methods 
653 |a Approximation 
653 |a Stochastic models 
653 |a Logit models 
653 |a Error analysis 
653 |a Methods 
653 |a Algebra 
653 |a Polynomials 
653 |a Walsh function 
653 |a Numerical methods 
653 |a Parameter estimation 
700 1 |a Beuria, Sanghamitra  |u OUAT, College of Basic Science and Humanities, Bhubaneswar, India (GRID:grid.412372.1) (ISNI:0000 0001 2292 0631) 
700 1 |a Parida, Nigam Chandra  |u OUAT, College of Basic Science and Humanities, Bhubaneswar, India (GRID:grid.412372.1) (ISNI:0000 0001 2292 0631) 
700 1 |a Izadi, Mohammad  |u Shahid Bahonar University of Kerman, Department of Applied Mathematics, Faculty of Mathematics and Computer, Kerman, Iran (GRID:grid.412503.1) (ISNI:0000 0000 9826 9569) 
773 0 |t Boundary Value Problems  |g vol. 2025, no. 1 (Dec 2025), p. 136 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255903925/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255903925/fulltext/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255903925/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch