Facial emotion recognition using deep Siamese neural networks: multi-classifier fusion for single-emotion and multi-emotion models across age groups

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Journal of Big Data vol. 12, no. 1 (Sep 2025), p. 222
المؤلف الرئيسي: Rathod, Tejas
مؤلفون آخرون: Patil, Shruti, Shahade, Aniket K., Kadam, Prachi, Kulkarni, Ambarish
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3255904159
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01287-3  |2 doi 
035 |a 3255904159 
045 2 |b d20250901  |b d20250930 
100 1 |a Rathod, Tejas  |u Symbiosis International (Deemed University), Symbiosis Centre for Applied Artificial Intelligence, Pune, India (GRID:grid.444681.b) (ISNI:0000 0004 0503 4808) 
245 1 |a Facial emotion recognition using deep Siamese neural networks: multi-classifier fusion for single-emotion and multi-emotion models across age groups 
260 |b Springer Nature B.V.  |c Sep 2025 
513 |a Journal Article 
520 3 |a This research examines facial expressions as social cues in online platforms, focusing on online learning and remote work. Our high-accuracy emotion recognition framework is designed for post-session evaluation, aiding teaching strategies and identifying students needing support without real-time monitoring. By employing a sophisticated fusion of data, image, and feature-level analysis, complemented by multi-classifier systems, this study capitalizes on the strengths of Siamese networks to achieve a refined understanding of emotion recognition. The investigation spans various age groups and ethnicities, employing multiple datasets such as LIRIS-CSE, Cohn-Kanade, and Jaffe, alongside the author’s datasets for children and teens. This rigorous examination underlines the role of Information Fusion in enriching communication and collaboration within digital interfaces. The research underscores the use of advanced techniques in interpreting facial cues by merging Siamese networks with pretrained models such as VGG 19 and Inception Resnet V2. The paper compares Siamese networks with other architectures for remote work/play, and asserts that such networks are more flexible. Comparatively, networks with Siamese architecture use convolutional neural network and recurrent neural network for input branches while other networks such as VGG19 and Inception Resnet V2 use a single neural network. The SCNN-IRV2 model demonstrated impressive test accuracies, ranging from 96 to 99% for single-emotion models and 84–96% for multi-emotion models, reflecting an improvement of 1.05–10.13% over the Inception Resnet V2 CNN architecture. In a similar vein, the SCNN-VGG19 model achieved test accuracies between 95% and 99% for single-emotion models and 75–94% for multi-emotion models, surpassing the VGG19 CNN architecture by 207–422%. These findings highlight the role of advanced fusion techniques and thoughtful design in improving online education and remote work, fostering progress in emotional data analysis and human-computer interaction. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Communication 
653 |a Artificial neural networks 
653 |a Gender 
653 |a Work at home 
653 |a Data integration 
653 |a Age 
653 |a Privacy 
653 |a Ethics 
653 |a Machine learning 
653 |a Emotions 
653 |a Bias 
653 |a COVID-19 
653 |a Data analysis 
653 |a Cues 
653 |a Artificial intelligence 
653 |a Human-computer interface 
653 |a Emotion recognition 
653 |a Computer vision 
653 |a Neural networks 
653 |a Recurrent neural networks 
653 |a Age groups 
653 |a Bullying 
653 |a Real time 
653 |a Big Data 
653 |a Human technology relationship 
653 |a Computer assisted instruction--CAI 
653 |a Human-computer interaction 
653 |a Models 
653 |a Facial expressions 
653 |a Recurrent 
653 |a Architecture 
653 |a Internet 
653 |a Interfaces 
653 |a Teaching 
653 |a Recognition 
653 |a Age differences 
653 |a Distance learning 
653 |a Acknowledgment 
653 |a Networks 
653 |a Teaching methods 
653 |a Academic achievement 
653 |a Ethnic groups 
700 1 |a Patil, Shruti  |u Symbiosis International (Deemed University), Symbiosis Centre for Applied Artificial Intelligence, Pune, India (GRID:grid.444681.b) (ISNI:0000 0004 0503 4808); Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune, India (GRID:grid.444681.b) (ISNI:0000 0004 0503 4808) 
700 1 |a Shahade, Aniket K.  |u Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune, India (GRID:grid.444681.b) (ISNI:0000 0004 0503 4808) 
700 1 |a Kadam, Prachi  |u AI Consultant, Pune, India (GRID:grid.444681.b) 
700 1 |a Kulkarni, Ambarish  |u Swinburne University of Technology, School of Engineering, Hawthorn, Australia (GRID:grid.1027.4) (ISNI:0000 0004 0409 2862) 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Sep 2025), p. 222 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255904159/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255904159/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255904159/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch