Research and implementation of an authentication system fusing physical layer and behavioral fingerprinting for power systems

Guardado en:
Detalles Bibliográficos
Publicado en:EURASIP Journal on Advances in Signal Processing vol. 2025, no. 1 (Dec 2025), p. 47
Autor principal: Chen, Mu
Otros Autores: Li, Nige, Li, Yong, Zhang, Bo, Xiao, Yongcai, Wang, Tengyan, Lu, Ziang
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3255933270
003 UK-CbPIL
022 |a 1687-6172 
022 |a 1687-6180 
024 7 |a 10.1186/s13634-025-01243-6  |2 doi 
035 |a 3255933270 
045 2 |b d20251201  |b d20251231 
084 |a 130316  |2 nlm 
100 1 |a Chen, Mu  |u China Electric Power Research Institute Co., Ltd, Nanjing, China (ISNI:0000 0004 5928 1249); State Grid Laboratory of Power Cyber-Security Protection and Monitoring Technology, Nanjing, China; Xiamen University, Xiamen, China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233) 
245 1 |a Research and implementation of an authentication system fusing physical layer and behavioral fingerprinting for power systems 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a With the rapid growth of resource integration in modern power systems, these resources are diverse, large-scale, and situated in complex and open physical environments, making them relatively vulnerable to cyber-attacks due to weaker security measures. To address this challenge, this paper proposes an identity authentication architecture system that integrates software and hardware. In the software fingerprint section, we extract packet characteristics and statistical features through network probing, and combine them with time difference sequence features obtained from side-channel monitoring to generate the software fingerprint of the power smart terminal by direct concatenation. This method incorporates various characteristic informations, enhancing the recognition accuracy of the fingerprint features. In the hardware fingerprint section, we generate hardware fingerprints by extracting the preamble signal and performing statistical feature analysis. Finally, using an ensemble learning method, we integrate the software and hardware fingerprints to generate device fingerprint features. This approach effectively addresses the security authentication issue of power equipment based on High-Level Power Line Communication (HPLC), achieving a recognition rate of over 95% under most machine learning classification methods. 
653 |a Forgery 
653 |a Software 
653 |a Data integrity 
653 |a Security 
653 |a Fingerprinting 
653 |a Hardware 
653 |a Signal processing 
653 |a Process controls 
653 |a Data processing 
653 |a Power lines 
653 |a Data collection 
653 |a Transmitters 
653 |a Data encryption 
653 |a Fingerprints 
653 |a Algorithms 
653 |a Machine learning 
653 |a Authentication 
653 |a Ensemble learning 
653 |a Efficiency 
700 1 |a Li, Nige  |u China Electric Power Research Institute Co., Ltd, Nanjing, China (GRID:grid.12955.3a) (ISNI:0000 0004 5928 1249); State Grid Laboratory of Power Cyber-Security Protection and Monitoring Technology, Nanjing, China (GRID:grid.12955.3a) 
700 1 |a Li, Yong  |u China Electric Power Research Institute Co., Ltd, Nanjing, China (GRID:grid.12955.3a) (ISNI:0000 0004 5928 1249); State Grid Laboratory of Power Cyber-Security Protection and Monitoring Technology, Nanjing, China (GRID:grid.12955.3a) 
700 1 |a Zhang, Bo  |u China Electric Power Research Institute Co., Ltd, Nanjing, China (GRID:grid.12955.3a) (ISNI:0000 0004 5928 1249); State Grid Laboratory of Power Cyber-Security Protection and Monitoring Technology, Nanjing, China (GRID:grid.12955.3a); Shanghai Jiao Tong University, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
700 1 |a Xiao, Yongcai  |u State Grid Jiangxi Electric Power Research Institute, NanChang, China (GRID:grid.433158.8) (ISNI:0000 0000 8891 7315) 
700 1 |a Wang, Tengyan  |u China Electric Power Research Institute Co., Ltd, Nanjing, China (GRID:grid.433158.8) (ISNI:0000 0004 5928 1249); State Grid Laboratory of Power Cyber-Security Protection and Monitoring Technology, Nanjing, China (GRID:grid.433158.8) 
700 1 |a Lu, Ziang  |u China Electric Power Research Institute Co., Ltd, Nanjing, China (GRID:grid.433158.8) (ISNI:0000 0004 5928 1249); State Grid Laboratory of Power Cyber-Security Protection and Monitoring Technology, Nanjing, China (GRID:grid.433158.8) 
773 0 |t EURASIP Journal on Advances in Signal Processing  |g vol. 2025, no. 1 (Dec 2025), p. 47 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3255933270/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3255933270/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3255933270/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch