Enhancing performance of E-Government information systems with SSD-based Hadoop mapreduce

Na minha lista:
Detalhes bibliográficos
Publicado no:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 33921-33936
Autor principal: Ishengoma, Fredrick
Publicado em:
Nature Publishing Group
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3256002334
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-08811-8  |2 doi 
035 |a 3256002334 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Ishengoma, Fredrick  |u Department of Information Systems and Technology, College of Informatics and Virtual Education, The University of Dodoma, Dodoma, Tanzania (ROR: https://ror.org/009n8zh45) (GRID: grid.442459.a) (ISNI: 0000 0001 1998 2954) 
245 1 |a Enhancing performance of E-Government information systems with SSD-based Hadoop mapreduce 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a E-government applications generate and process large volumes of heterogeneous data that demand high-throughput and low-latency computation. Although Hadoop MapReduce is commonly used for such tasks, its performance is often limited by disk I/O constraints and network delays during the shuffle phase. This study proposes a data address-based shuffle mechanism optimized for Hadoop clusters equipped with Solid-State Drives (SSDs), aiming to enhance data processing performance in e-government applications. The mechanism introduces three key components: address-based sorting, address-based merging, and pre-transmission of intermediate data, which collectively reduce disk I/O and network transfer overhead. Experimental evaluations using Terasort and Wordcount benchmarks demonstrate execution time reductions of 8% and 1%, respectively, with statistical significance confirmed through 95% confidence intervals. Scalability assessments on a simulated 50-node cluster and energy profiling further validate the approach, showing improved performance, reduced network congestion, and a 31% decrease in energy consumption compared to HDD-based systems. The findings establish the proposed mechanism as a cost-effective and efficient solution for large-scale data processing in public sector computing environments. 
653 |a Energy consumption 
653 |a Big Data 
653 |a Machine learning 
653 |a Benchmarks 
653 |a Government information 
653 |a Network management systems 
653 |a Information systems 
653 |a Data processing 
653 |a Electronic government 
653 |a Public sector 
653 |a Literature reviews 
653 |a Batch processing 
653 |a Latency 
653 |a Fault tolerance 
653 |a Efficiency 
653 |a Distributed processing 
653 |a Economic 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 33921-33936 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256002334/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256002334/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256002334/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch