OpenFOAM computational fluid dynamics (CFD) solver for magnetohydrodynamic open cycles, applied to the Sakhalin pulsed magnetohydrodynamic generator (PMHDG)

Сохранить в:
Библиографические подробности
Опубликовано в::SN Applied Sciences vol. 7, no. 10 (Oct 2025), p. 1108
Главный автор: Marzouk, Osama A.
Опубликовано:
Springer Nature B.V.
Предметы:
Online-ссылка:Citation/Abstract
Full Text
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3256009454
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-07744-1  |2 doi 
035 |a 3256009454 
045 2 |b d20251001  |b d20251031 
100 1 |a Marzouk, Osama A.  |u University of Buraimi, College of Engineering, Al Buraimi, Sultanate of Oman (GRID:grid.449810.0) (ISNI:0000 0004 5345 8277) 
245 1 |a OpenFOAM computational fluid dynamics (CFD) solver for magnetohydrodynamic open cycles, applied to the Sakhalin pulsed magnetohydrodynamic generator (PMHDG) 
260 |b Springer Nature B.V.  |c Oct 2025 
513 |a Journal Article 
520 3 |a In the current study, we present a mathematical and computational fluid dynamics (CFD) model for simulating open-cycle linear Faraday-type continuous-electrode channels of magnetohydrodynamic (MHD) power generators, operating on combustion plasma. The model extends the Favre-averaged Navier–Stokes equations to account for the electric properties of the flowing plasma gas and its reaction to the applied magnetic field. The model takes into account various effects, such as the Lorentz force, turbulence, compressibility, and energy extraction from the plasma, and it adopts an electric potential technique along with the low magnetic Reynolds number (Rem) approximation. The model is numerically implemented using the multiphysics open-source computer programming environment “OpenFOAM,” which combines the finite volume method (FVM) and the object-oriented programming (OOP) concept. The capabilities of the model are demonstrated by simulating the supersonic channel of the large-scale pulsed MHD generator (PMHDG) called “Sakhalin”, with the aid of collected data and empirical expressions in the literature about its tested operation. Sakhalin was the world’s largest PMHDG, with a demonstrated peak electric power output of 510 MW. Sakhalin operated on solid-propellant plasma (SPP), and it had a single supersonic divergent Faraday-type continuous-electrode channel with a length of 4.5 m. We check the validity of the model through comparisons with independent results for the Sakhalin PMHDG. Then, we process our three-dimensional simulation results to provide scalar characteristics of the Sakhalin channel, one-dimensional profiles along the longitudinal centerline, and three-dimensional distributions in the entire channel. For example, we show that the temperature does not change significantly along the Sakhalin PMHDG, with the outlet mass-averaged temperature being 2738.4 K, which is close to the inlet value of 2750 K. Similarly, we find that the outlet mass-averaged absolute pressure is 3.294 bar, which is near the inlet value of 3.28 bar. On the other hand, the plasma is largely decelerated from an axial speed of 2050 m/s at the inlet to 1156 m/s at the outlet (mass average). Thus, the produced pulse electric energy is primarily extracted from the kinetic energy of the plasma, rather than from its thermal energy or its pressure energy. The resolved volume-average Lorentz force density vector is [− 89.12, 28.83, 0] kN/m3, and the resolved volume-average electric-current density vector is [1.462, − 4.517, 0] A/cm2. The presented OpenFOAM solver has several applications, including preliminary design of novel geometric shapes for MHD channels, exploration of the influence of various parameters on the performance of MHD power generators (such as the inlet Mach number, the inlet pressure, and the applied magnetic-field flux density), and estimating the residual energy contained in the exit plasma for proper identification of a downstream bottoming power cycle to extract some of this available energy. Aside from the presented OpenFOAM solver, we also provide an overview of various PMHDG systems. This study can benefit different research communities, particularly those interested in OpenFOAM applications, computational fluid dynamics (CFD), magnetohydrodynamics (MHD), open-cycle MHD generators, or multiphysics mathematical modeling. 
651 4 |a Union of Soviet Socialist Republics--USSR 
653 |a Magnetic flux 
653 |a Inlet pressure 
653 |a Channels 
653 |a Hydrodynamics 
653 |a Mathematical analysis 
653 |a Fluid dynamics 
653 |a Power plants 
653 |a Fluid flow 
653 |a Pressure 
653 |a Heat 
653 |a Computer applications 
653 |a Electric power 
653 |a Compressibility 
653 |a Electrodes 
653 |a Electric potential 
653 |a Turbines 
653 |a Energy conversion 
653 |a Mach number 
653 |a Magnetohydrodynamics 
653 |a Carbon 
653 |a Kinetic energy 
653 |a Magnetic fields 
653 |a Mathematical models 
653 |a Preliminary designs 
653 |a Object oriented programming 
653 |a Computer programming 
653 |a Plasma 
653 |a Programming environments 
653 |a Residual energy 
653 |a Flux density 
653 |a Green hydrogen 
653 |a Solvers 
653 |a Finite volume method 
653 |a Magnetohydrodynamic generators 
653 |a Potassium 
653 |a Reynolds number 
653 |a Thermal energy 
653 |a Gases 
653 |a Electricity 
653 |a Energy industry 
653 |a Temperature 
653 |a Lorentz force 
653 |a Computational fluid dynamics 
653 |a Environmental 
773 0 |t SN Applied Sciences  |g vol. 7, no. 10 (Oct 2025), p. 1108 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256009454/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256009454/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256009454/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch