A comprehensive survey on secure healthcare data processing with homomorphic encryption: attacks and defenses

Guardat en:
Dades bibliogràfiques
Publicat a:Discover Public Health vol. 22, no. 1 (Dec 2025), p. 137
Autor principal: Lee, Chian Hui
Altres autors: Lim, King Hann, Eswaran, Sivaraman
Publicat:
Nature Publishing Group
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3256362542
003 UK-CbPIL
022 |a 3005-0774 
022 |a 1742-7622 
024 7 |a 10.1186/s12982-025-00505-w  |2 doi 
035 |a 3256362542 
045 2 |b d20251201  |b d20251231 
084 |a 109711  |2 nlm 
100 1 |a Lee, Chian Hui  |u Curtin University Malaysia, Department of Electrical and Computer Engineering, Miri, Malaysia (GRID:grid.448987.e) 
245 1 |a A comprehensive survey on secure healthcare data processing with homomorphic encryption: attacks and defenses 
260 |b Nature Publishing Group  |c Dec 2025 
513 |a Journal Article 
520 3 |a Healthcare data has risen as a top target for cyberattacks due to the rich amount of sensitive patient information. This negatively affects the potential of advanced analytics and collaborative research in healthcare. Homomorphic encryption (HE) has emerged as a promising technology for securing sensitive healthcare data while enabling computations on encrypted information. This paper conducts a background survey of HE and its various types. It discusses Partially Homomorphic Encryption (PHE), Somewhat Homomorphic Encryption (SHE), Fully Homomorphic Encryption (FHE) and Fully Leveled Homomorphic Encryption (FLHE). A critical analysis of these encryption paradigms’ theoretical foundations, implementation schemes, and practical applications in healthcare contexts is presented. The survey encompasses diverse healthcare domains. It demonstrates HE’s versatility in securing electronic health records (EHRs), enabling privacy-preserving genomic data analysis, protecting medical imaging, facilitating privacy-preserving machine learning (ML), supporting secure federated learning, ensuring confidentiality in clinical trials, and enhancing remote monitoring and telehealth services. A comprehensive examination of potential vulnerabilities in HE systems is conducted. The research systematically investigates various attack vectors, including side-channel attacks, key recovery attacks, chosen plaintext attacks (CPA), chosen ciphertext attacks (CCA), known plaintext attacks (KPA), fault injection attacks (FIA), and lattice attacks. A detailed analysis of potential defense mechanisms and mitigation strategies is provided for each identified threat. The analysis underscores the importance of HE for long-term security and sustainability in healthcare systems. 
653 |a Clinical trials 
653 |a Encryption 
653 |a Data processing 
653 |a Medical research 
653 |a Health care 
653 |a Medical imaging 
653 |a Remote monitoring 
653 |a Data analysis 
653 |a Personal health 
653 |a Privacy 
653 |a Genomics 
653 |a Machine learning 
653 |a Health care industry 
653 |a Electronic medical records 
653 |a Electronic health records 
653 |a Data integrity 
653 |a Sustainable development 
653 |a Confidentiality 
653 |a Genomic analysis 
653 |a Data encryption 
653 |a Surveys 
653 |a Federated learning 
653 |a Precision medicine 
653 |a Social 
653 |a Economic 
700 1 |a Lim, King Hann  |u Curtin University Malaysia, Department of Electrical and Computer Engineering, Miri, Malaysia (GRID:grid.448987.e) 
700 1 |a Eswaran, Sivaraman  |u Curtin University Malaysia, Department of Electrical and Computer Engineering, Miri, Malaysia (GRID:grid.448987.e) 
773 0 |t Discover Public Health  |g vol. 22, no. 1 (Dec 2025), p. 137 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256362542/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256362542/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256362542/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch