SZ4IoT: an adaptive lightweight lossy compression algorithm for diverse IoT devices and data types

Guardat en:
Dades bibliogràfiques
Publicat a:The Journal of Supercomputing vol. 81, no. 2 (Jan 2025), p. 392
Autor principal: Kadhum Idrees, Sara
Altres autors: Azar, Joseph, Couturier, Raphaël, Kadhum Idrees, Ali, Gechter, Franck
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3256604256
003 UK-CbPIL
022 |a 0920-8542 
022 |a 1573-0484 
024 7 |a 10.1007/s11227-024-06667-9  |2 doi 
035 |a 3256604256 
045 2 |b d20250101  |b d20250131 
100 1 |a Kadhum Idrees, Sara  |u Université de Technologie de Belfort Montbéliard, UTBM, CIAD (UMR 7533), Belfort, France (GRID:grid.23082.3b) (ISNI:0000 0001 2175 8847); University of Babylon, Department of Information Networks, College of Information Technology, Babylon, Iraq (GRID:grid.427646.5) (ISNI:0000 0004 0417 7786) 
245 1 |a SZ4IoT: an adaptive lightweight lossy compression algorithm for diverse IoT devices and data types 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a The Internet of Things (IoT) is an essential platform for industrial applications since it enables massive systems connecting many IoT devices for analytical data collection. This attribute is responsible for the exponential development in the amount of data created by IoT devices. IoT devices can generate voluminous amounts of data, which may place extraordinary demands on their limited resources, data transfer bandwidths, and cloud storage. Using lightweight IoT data compression techniques is a practical way to deal with these problems. This paper presents adaptable lightweight SZ lossy compression algorithm for IoT devices (SZ4IoT), a lightweight and adjusted version of the SZ lossy compression method. The SZ4IoT is a local (non-distributed) and interpolation-based compressor that can accommodate any sensor data type and can be implemented on microcontrollers with low resources. It operates on univariate and multivariate time series. It was implemented and tested on various devices, including the ESP32, Teensy 4.0, and RP2040, and evaluated on multiple datasets. The experiments of this paper focus on the compression ratio, compression and decompression time, normalized root mean square error (NRMSE), and energy consumption and prove the effectiveness of the proposed approach. The compression ratio outperforms LTC, WQT RLE, and K RLE by two, three, and two times, respectively. The proposed SZ4IoT decreased the consumed energy for the data size 40 KB by 31.4, 29.4, and 27.3% compared with K RLE, LTC, and WQT RLE, respectively. In addition, this paper investigates the impact of stationary versus non-stationary time series datasets on the compression ratio. 
653 |a Data transfer (computers) 
653 |a Datasets 
653 |a Internet of Things 
653 |a Wavelet transforms 
653 |a Data compression 
653 |a Signal processing 
653 |a Sensors 
653 |a Approximation 
653 |a Industrial applications 
653 |a Algorithms 
653 |a Devices 
653 |a Data storage 
653 |a Time series 
653 |a Energy consumption 
653 |a Compression ratio 
653 |a Data collection 
653 |a Efficiency 
700 1 |a Azar, Joseph  |u University of Franche-Comté, FEMTO-ST Institute, UMR 6174 CNRS, Besançon, France (GRID:grid.7459.f) (ISNI:0000 0001 2188 3779) 
700 1 |a Couturier, Raphaël  |u University of Franche-Comté, FEMTO-ST Institute, UMR 6174 CNRS, Besançon, France (GRID:grid.7459.f) (ISNI:0000 0001 2188 3779) 
700 1 |a Kadhum Idrees, Ali  |u University of Babylon, Department of Information Networks, College of Information Technology, Babylon, Iraq (GRID:grid.427646.5) (ISNI:0000 0004 0417 7786); University of Applied Science and Arts, Smart Edge Lab, Faculty of Computer Science, Dortmund, Germany (GRID:grid.449119.0) (ISNI:0000 0004 0548 7321) 
700 1 |a Gechter, Franck  |u Université de Technologie de Belfort Montbéliard, UTBM, CIAD (UMR 7533), Belfort, France (GRID:grid.23082.3b) (ISNI:0000 0001 2175 8847) 
773 0 |t The Journal of Supercomputing  |g vol. 81, no. 2 (Jan 2025), p. 392 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256604256/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256604256/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256604256/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch