Feasibility-guided evolutionary optimization of pump station design and operation in water networks

Na minha lista:
Detalhes bibliográficos
Publicado no:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 34455-34470
Autor principal: Faúndez-Lizama, Thalía
Outros Autores: Gutiérrez-Bahamondes, Jimmy H., Gajardo-Sepúlveda, Nicolás, Mora-Meliá, Daniel
Publicado em:
Nature Publishing Group
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3256605232
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-17630-w  |2 doi 
035 |a 3256605232 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Faúndez-Lizama, Thalía  |u Master’s Program in Operations Management, Faculty of Engineering, Universidad de Talca, 3340000, Curicó, Chile (ROR: https://ror.org/01s4gpq44) (GRID: grid.10999.38) (ISNI: 0000 0001 0036 2536) 
245 1 |a Feasibility-guided evolutionary optimization of pump station design and operation in water networks 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Pumping stations are critical elements of water distribution networks (WDNs), as they ensure the required pressure for supply but represent the highest energy consumption within these systems. In response to increasing water scarcity and the demand for more efficient operations, this study proposes a novel methodology to optimize both the design and operation of pumping stations. The approach combines Feasibility-Guided Evolutionary Algorithms (FGEAs) with a Feasibility Predictor Model (FPM), a machine learning-based classifier designed to identify feasible solutions and filter out infeasible ones before performing hydraulic simulations. This significantly reduces the computational burden. The methodology is validated through a real-scale case study using four FGEAs, each incorporating a different classification algorithm: Extreme Gradient Boosting, Random Forest, K-Nearest Neighbors, and Decision Tree. Results show that the number of objective function evaluations was reduced from 50,000 to fewer than 25,000. Additionally, The FGEAs based on Extreme Gradient Boosting and Random Forest outperformed the original algorithm in terms of objective value. These results confirm the effectiveness of integrating machine learning into evolutionary optimization for solving complex engineering problems and highlight the potential of this methodology to reduce operational costs while improving computational efficiency in WDNs. 
653 |a Mathematical models 
653 |a Algorithms 
653 |a Optimization techniques 
653 |a Drainage 
653 |a Civil engineering 
653 |a Feasibility 
653 |a Machine learning 
653 |a Computer applications 
653 |a Energy consumption 
653 |a Water distribution 
653 |a Learning algorithms 
653 |a Case studies 
653 |a Water quality 
653 |a Scheduling 
653 |a Simulation 
653 |a Infrastructure 
653 |a Costs 
653 |a Genetic algorithms 
653 |a Objective function 
653 |a Water scarcity 
653 |a Methods 
653 |a Pumping stations 
653 |a Hydraulics 
653 |a Economic 
700 1 |a Gutiérrez-Bahamondes, Jimmy H.  |u Department of Computer Science, Universidad de Talca, 3340000, Curicó, Chile (ROR: https://ror.org/01s4gpq44) (GRID: grid.10999.38) (ISNI: 0000 0001 0036 2536) 
700 1 |a Gajardo-Sepúlveda, Nicolás  |u Master’s Program in Operations Management, Faculty of Engineering, Universidad de Talca, 3340000, Curicó, Chile (ROR: https://ror.org/01s4gpq44) (GRID: grid.10999.38) (ISNI: 0000 0001 0036 2536) 
700 1 |a Mora-Meliá, Daniel  |u Department of Hydraulic Engineering and Environment, Universitat Politècnica de València, 46022, Valencia, Spain (ROR: https://ror.org/01460j859) (GRID: grid.157927.f) (ISNI: 0000 0004 1770 5832) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 34455-34470 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256605232/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256605232/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256605232/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch