Strata migration and fracture development under continuous extraction and continuous backfill with CO2 mineralized backfill materials

Uloženo v:
Podrobná bibliografie
Vydáno v:Geomechanics and Geophysics for Geo-Energy and Geo-Resources vol. 11, no. 1 (Dec 2025), p. 50
Hlavní autor: Xu, Yujun
Další autoři: Ma, Liqiang, Wang, Yangyang, Zhai, Jiangtao, Zhao, Zhiyang
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3256842566
003 UK-CbPIL
022 |a 2363-8419 
022 |a 2363-8427 
024 7 |a 10.1007/s40948-025-00970-2  |2 doi 
035 |a 3256842566 
045 2 |b d20251201  |b d20251231 
100 1 |a Xu, Yujun  |u Anhui University of Science and Technology, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Huainan, China (GRID:grid.440648.a) (ISNI:0000 0001 0477 188X) 
245 1 |a Strata migration and fracture development under continuous extraction and continuous backfill with CO<sub>2</sub> mineralized backfill materials 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a CO2 carbonation is currently restricted in laboratory instead of industrial application at ambient conditions. Meanwhile, few evaluations for safe storage have been made after CO2 carbonation backfill. Herein, the continuous extraction and continuous backfill (CECB) with CO2 mineralization backfill materials (CMBM) to storage CO2 was proposed. The CMBM samples were prepared and the uniaxial compressive strength (UCS) and CO2 uptake rates at various curing times and fly ash (FA)/gangue ratios were tested. The early and later strength at all ratios is more than 1 and 3.6&#xa0;MPa, respectively, satisfying the requirements in underground backfill. A higher FA proportion means a higher UCS and a more significant effect of curing time on UCS as the hydration products of cement and FA contribute primarily to the early and later strength, respectively. As FA content rises, the CO2 uptake rate increases from 3.55 to 4.25&#xa0;mg-CO2/g-CMBM since the alkaline oxides such as CaO in FA are higher than those in gangue. An analogue model was then constructed to simulate the overburden deformation. The ratio of the similar materials of CMBM at 7 d and F6G4 was determined to Water: Sand: CaCO3: CaSO4 of 3.56: 13.56: 0.94: 0.51. The maximum horizontal deformation of aquifuge is lower than the threshold value of 0.2–0.3&#xa0;mm/m for preserving aquifer. The strain-softening parameters including cohesion, friction, dilation, and tensile strength were determined to be 0.54, 30°, 0, and 0 for UDEC simulation. The envelopes of water-conductive fractured zone (WCFZ) are saddle shaped, and the height of WCFZ is 4, 9.5, 17, and 26&#xa0;m, respectively. After backfilling, there are still entire strata with thickness of 5&#xa0;m between WCFZ and aquifer II. The research offers a novel way to dispose CO2 gas, solid wastes and mitigate overburden deformation, which is conducive to geological disposal of energy wastes.Article Highlights<list list-type="bullet"><list-item></list-item>The UCS and CO2 uptake rates of CMBM were analyzed.<list-item>The key ratio of physical similar materials of CMBM w as determined</list-item><list-item>The key ratio of physical similar materials of CMBM w as determinedThe key ratio of physical similar materials of CMBM w as determined</list-item><list-item>Strata migration and fracture development was illustrated under CECB with CMBM.</list-item> 
651 4 |a China 
653 |a Curing 
653 |a Mechanical properties 
653 |a Plastic deformation 
653 |a Carbon dioxide 
653 |a Coal mining 
653 |a Carbonation 
653 |a Strata 
653 |a Compressive strength 
653 |a Backfill 
653 |a Deformation 
653 |a Fly ash 
653 |a Aquifers 
653 |a Chemical reactions 
653 |a Solid wastes 
653 |a Mineralization 
653 |a Solid impurities 
653 |a Gangue 
653 |a Overburden 
653 |a Analog models 
653 |a Calcium carbonate 
653 |a Curing (processing) 
653 |a Raw materials 
653 |a Industrial applications 
653 |a Cement 
653 |a Tensile strength 
653 |a Environmental 
700 1 |a Ma, Liqiang  |u Ministry of Education, Key Laboratory of Xinjiang Coal Resources Green Mining (Xinjiang Institute of Engineering), Urumqi, China (GRID:grid.454828.7) (ISNI:0000 0004 0638 8050); China University of Mining and Technology, School of Mines, Xuzhou, China (GRID:grid.411510.0) (ISNI:0000 0000 9030 231X) 
700 1 |a Wang, Yangyang  |u DIMINE Co., Ltd, Changsha, China (GRID:grid.411510.0) 
700 1 |a Zhai, Jiangtao  |u China University of Mining and Technology, School of Mines, Xuzhou, China (GRID:grid.411510.0) (ISNI:0000 0000 9030 231X) 
700 1 |a Zhao, Zhiyang  |u China University of Mining and Technology, School of Mines, Xuzhou, China (GRID:grid.411510.0) (ISNI:0000 0000 9030 231X) 
773 0 |t Geomechanics and Geophysics for Geo-Energy and Geo-Resources  |g vol. 11, no. 1 (Dec 2025), p. 50 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256842566/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256842566/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256842566/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch