The Shifted-Exponential Variation Property for the Weibull and Log-Logistic Models

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematical Methods of Statistics vol. 34, no. 1 (Mar 2025), p. 67
Autor principal: Sawadogo, Amadou
Otros Autores: Bourguignon, Marcelo, Kokonendji, Célestin C.
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3256938764
003 UK-CbPIL
022 |a 1066-5307 
022 |a 1934-8045 
024 7 |a 10.3103/S1066530724600015  |2 doi 
035 |a 3256938764 
045 2 |b d20250101  |b d20250331 
084 |a 66329  |2 nlm 
100 1 |a Sawadogo, Amadou  |u UFR de Mathématiques et Informatique, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire (GRID:grid.410694.e) (ISNI:0000 0001 2176 6353) 
245 1 |a The Shifted-Exponential Variation Property for the Weibull and Log-Logistic Models 
260 |b Springer Nature B.V.  |c Mar 2025 
513 |a Journal Article 
520 3 |a In this paper, the recent shifted-exponential variation property which is defined as the ratio of variance to the squared of shifted expectation is investigated for both three-parameter Weibull and log-logistic models. These nonnegative semicontinuous models are widely considered in engineering, economics, hydrology, demography and many other fields. It is shown that the log-logistic distribution corresponds to over-, equi-, and under-varied if and only if its only positive shape parameter <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="12004_2025_5066_Article_IEq1.gif" /> is greater, equal and less than the determined value <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="12004_2025_5066_Article_IEq2.gif" />, respectively. Similar result holds for the Weibull distribution with <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="12004_2025_5066_Article_IEq3.gif" /> and extends the one of two-parameter model. The Newton–Raphson method is used to determine the approximative value <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="12004_2025_5066_Article_IEq4.gif" /> of the log-logistic model; it can thus lead to the reference shifted-exponential model, as for <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="12004_2025_5066_Article_IEq3.gif" /> of the Weibull one. The relative variation between Weibull and log-logistic is also mentioned. Finally, two illustrative applications are provided. 
653 |a Newton-Raphson method 
653 |a Weibull distribution 
653 |a Datasets 
653 |a Random variables 
653 |a Confidence intervals 
653 |a Parameters 
653 |a Demography 
653 |a Maximum likelihood method 
653 |a Mathematical models 
653 |a Statistical analysis 
700 1 |a Bourguignon, Marcelo  |u Departamento de Estatistica, Universidade Federal do Rio Grande do Norte, Natal, Brazil (GRID:grid.411233.6) (ISNI:0000 0000 9687 399X) 
700 1 |a Kokonendji, Célestin C.  |u Laboratoire de Mathématiques de Besançon UMR 6623 CNRS-UMPL, Université Marie &amp; Louis Pasteur, Besançon Cedex, France (GRID:grid.411233.6); Laboratoire de Mathématiques et Connexes de Bangui, Université de Bangui, Bangui B.P., Central African Republic (GRID:grid.25077.37) (ISNI:0000 0000 9737 7808) 
773 0 |t Mathematical Methods of Statistics  |g vol. 34, no. 1 (Mar 2025), p. 67 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256938764/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256938764/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256938764/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch