Change-point detection in a tensor regression model

Guardado en:
Detalles Bibliográficos
Publicado en:Test vol. 33, no. 2 (Jun 2024), p. 609
Autor principal: Ghannam, Mai
Otros Autores: Nkurunziza, Sévérien
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3256964740
003 UK-CbPIL
022 |a 1133-0686 
022 |a 1863-8260 
024 7 |a 10.1007/s11749-023-00915-5  |2 doi 
035 |a 3256964740 
045 2 |b d20240401  |b d20240630 
084 |a 176049  |2 nlm 
100 1 |a Ghannam, Mai  |u University of Windsor, Mathematics and Statistics department, Windsor, USA (GRID:grid.267455.7) (ISNI:0000 0004 1936 9596) 
245 1 |a Change-point detection in a tensor regression model 
260 |b Springer Nature B.V.  |c Jun 2024 
513 |a Journal Article 
520 3 |a In this paper, we consider an inference problem in a tensor regression model with one change-point. Specifically, we consider a general hypothesis testing problem on a tensor parameter and the studied testing problem includes as a special case the problem about the absence of a change-point. To this end, we derive the unrestricted estimator (UE) and the restricted estimator (RE) as well as the joint asymptotic normality of the UE and RE. Thanks to the established asymptotic normality, we derive a test for testing the hypothesized restriction. We also derive the asymptotic power of the proposed test and we prove that the established test is consistent. Beyond the complexity of the testing problem in the tensor model, we consider a very general case where the tensor error term and the regressors do not need to be independent and the dependence structure of the outer-product of the tensor error term and regressors is as weak as that of an L2-<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="11749_2023_915_Article_IEq1.gif" /> mixingale. Further, to study the performance of the proposed methods in small and moderate sample sizes, we present some simulation results that corroborate the theoretical results. Finally, to illustrate the application of the proposed methods, we test the non-existence of a change-point in some fMRI neuro-imaging data. 
653 |a Simulation 
653 |a Asymptotic properties 
653 |a Regression analysis 
653 |a Random variables 
653 |a Hypotheses 
653 |a Normality 
653 |a Regression models 
653 |a Tensors 
700 1 |a Nkurunziza, Sévérien  |u University of Windsor, Mathematics and Statistics department, Windsor, USA (GRID:grid.267455.7) (ISNI:0000 0004 1936 9596) 
773 0 |t Test  |g vol. 33, no. 2 (Jun 2024), p. 609 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256964740/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256964740/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256964740/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch