Visual perception enhancement fall detection algorithm based on vision transformer

Guardado en:
Detalles Bibliográficos
Publicado en:Signal, Image and Video Processing vol. 19, no. 1 (Jan 2025), p. 18
Autor principal: Cai, Xi
Otros Autores: Wang, Xiangcheng, Bao, Kexin, Chen, Yinuo, Jiao, Yin, Han, Guang
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3256966131
003 UK-CbPIL
022 |a 1863-1703 
022 |a 1863-1711 
024 7 |a 10.1007/s11760-024-03652-w  |2 doi 
035 |a 3256966131 
045 2 |b d20250101  |b d20250131 
100 1 |a Cai, Xi  |u Northeastern University at Qinhuangdao, Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Qinhuangdao, China (GRID:grid.261112.7) (ISNI:0000 0001 2173 3359) 
245 1 |a Visual perception enhancement fall detection algorithm based on vision transformer 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Fall detection is a crucial research topic in public healthcare. With advances in intelligent surveillance and deep learning, vision-based fall detection has gained significant attention. While numerous deep learning algorithms prevail in video fall detection due to excellent feature processing capabilities, they all exhibit limitations in handling long-term spatiotemporal dependencies. Recently, Vision Transformer has shown considerable potential in integrating global information and understanding long-term spatiotemporal dependencies, thus providing novel solutions. In view of this, we propose a visual perception enhancement fall detection algorithm based on Vision Transformer. We utilize Vision Transformer-Base as the baseline model for analyzing global motion information in videos. On this basis, to address the model’s difficulty in capturing subtle motion changes across video frames, we design an inter-frame motion information enhancement module. Concurrently, we propose a locality perception enhancement self-attention mechanism to overcome the model’s weak focus on local key features within the frame. Experimental results show that our method achieves notable performance on the Le2i and UR datasets, surpassing several advanced methods. 
653 |a Fall detection 
653 |a Accuracy 
653 |a Vision 
653 |a Deep learning 
653 |a Visual perception 
653 |a Video recordings 
653 |a Neural networks 
653 |a Design 
653 |a Algorithms 
653 |a Machine learning 
653 |a Time series 
653 |a Visual perception driven algorithms 
653 |a Efficiency 
700 1 |a Wang, Xiangcheng  |u Northeastern University at Qinhuangdao, Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Qinhuangdao, China (GRID:grid.261112.7) (ISNI:0000 0001 2173 3359) 
700 1 |a Bao, Kexin  |u Northeastern University at Qinhuangdao, Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Qinhuangdao, China (GRID:grid.261112.7) (ISNI:0000 0001 2173 3359) 
700 1 |a Chen, Yinuo  |u Northeastern University at Qinhuangdao, Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Qinhuangdao, China (GRID:grid.261112.7) (ISNI:0000 0001 2173 3359) 
700 1 |a Jiao, Yin  |u Northeastern University at Qinhuangdao, Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Qinhuangdao, China (GRID:grid.261112.7) (ISNI:0000 0001 2173 3359) 
700 1 |a Han, Guang  |u Northeastern University at Qinhuangdao, Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Qinhuangdao, China (GRID:grid.261112.7) (ISNI:0000 0001 2173 3359) 
773 0 |t Signal, Image and Video Processing  |g vol. 19, no. 1 (Jan 2025), p. 18 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3256966131/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3256966131/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3256966131/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch