Hydraulic Systems Security: Addressing Cyber Threats with DNA-Based Cryptography in Cloud-Integrated Control

Gardado en:
Detalles Bibliográficos
Publicado en:Hidraulica no. 3 (2025), p. 21-33
Autor Principal: Ţălu, Ştefan
Publicado:
Hidraulica
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3257113250
003 UK-CbPIL
022 |a 1453-7303 
022 |a 2343-7707 
035 |a 3257113250 
045 2 |b d20250701  |b d20250930 
084 |a 126109  |2 nlm 
100 1 |a Ţălu, Ştefan  |u Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviciu Street, no. 15, Cluj-Napoca, 400020, Cluj county, Romania 
245 1 |a Hydraulic Systems Security: Addressing Cyber Threats with DNA-Based Cryptography in Cloud-Integrated Control 
260 |b Hidraulica  |c 2025 
513 |a Journal Article 
520 3 |a Hydraulic control systems, widely used in industrial automation, aerospace, and energy sectors, are increasingly integrated with cloud platforms and Internet of Things (IoT) technologies to enhance monitoring, predictive maintenance, and operational efficiency. However, this digital integration exposes hydraulic infrastructures to a wide range of cyberattacks, including denial-of-service (DoS), ransomware, and advanced persistent threats (APT). Existing cybersecurity solutions for industrial control systems (ICS) rely on conventional cryptographic algorithms such as Advanced Encryption Standard (AES) and Rivest-Shamir- Adleman, which may be resource-intensive and vulnerable in constrained environments. This article explores cybersecurity challenges in hydraulic systems, analyzes real-world attack scenarios, and introduces Deoxyribonucleic Acid (DNA)-based cryptography as a novel, lightweight, and biologically inspired approach for securing cloud-integrated hydraulic infrastructures. Comparative evaluations are shown between DNA-based schemes and lightweight cryptography standards, highlighting performance, scalability, and resistance to classical attacks. Experimental insights, supported by graphical models and tabulated data, demonstrate the feasibility of DNA-based approaches for future-proofing hydraulic cybersecurity. 
653 |a Cryptography 
653 |a Internet of Things 
653 |a Control systems 
653 |a Distributed network protocols 
653 |a Communication 
653 |a Hydraulic equipment 
653 |a Deoxyribonucleic acid--DNA 
653 |a Signal processing 
653 |a Hydraulic control 
653 |a Firmware 
653 |a Cybersecurity 
653 |a Integrated control 
653 |a Automation 
653 |a Manufacturing 
653 |a Energy consumption 
653 |a Industrial electronics 
653 |a Efficiency 
653 |a Machine learning 
653 |a Data integrity 
653 |a Infrastructure 
653 |a Energy industry 
653 |a Sensors 
653 |a Industrial Internet of Things 
653 |a Distributed control systems 
653 |a Ransomware 
653 |a Denial of service attacks 
653 |a Hydraulic systems 
653 |a Algorithms 
653 |a Industry 4.0 
653 |a DNA 
653 |a Hydraulics 
653 |a Predictive maintenance 
653 |a Economic 
773 0 |t Hidraulica  |g no. 3 (2025), p. 21-33 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3257113250/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3257113250/fulltext/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3257113250/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch