Graph-based reinforcement learning for software-defined networking traffic engineering

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of King Saud University. Computer and Information Sciences vol. 37, no. 6 (Aug 2025), p. 119
Autor principal: Lu, Jingwen
Otros Autores: Tang, Chaowei, Ma, Wenyu, Xing, Wenjuan
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3257123389
003 UK-CbPIL
022 |a 1319-1578 
024 7 |a 10.1007/s44443-025-00133-z  |2 doi 
035 |a 3257123389 
045 2 |b d20250801  |b d20250831 
100 1 |a Lu, Jingwen  |u Chongqing University, School of Microelectronics and Communication Engineering, Chongqing, China (GRID:grid.190737.b) (ISNI:0000 0001 0154 0904) 
245 1 |a Graph-based reinforcement learning for software-defined networking traffic engineering 
260 |b Springer Nature B.V.  |c Aug 2025 
513 |a Journal Article 
520 3 |a With the continuous expansion of global Internet infrastructure, wide area networks play a crucial role in transmitting traffic between multiple data centers and users worldwide. However, efficient traffic management has become a core challenge due to the high costs of building and maintaining these networks. Traditional traffic engineering methods based on linear programming achieve optimal solutions but suffer from exponential computational complexity growth with network size, making them impractical for real-time applications in large-scale networks. Recent machine learning approaches show promise but still face fundamental limitations in handling complex network constraints and maintaining performance across different network scales. This paper proposes GRL-TE (Graph-based Reinforcement Learning for Traffic Engineering), a novel framework that achieves near-optimal performance while maintaining computational efficiency across diverse network scales. GRL-TE introduces three key innovations: (1) TopoFlowNet, a graph neural network architecture that models WANs as bipartite graphs with edge nodes representing physical links and path nodes representing candidate paths, enabling efficient bidirectional information propagation through GINConv layers while MLP modules handle collaborative relationships among paths serving the same demand; (2) A one-step A2C mechanism specifically designed for TE with immediate reward structure, eliminating the need for future state estimation and significantly simplifying training; (3) Integration of ADMM as a post-processing step to iteratively reduce constraint violations while improving solution quality. Extensive experiments on six real-world WAN topologies ranging from 12 to 1,739 nodes demonstrate that GRL-TE achieves an overall average demand satisfaction rate of 89.36%, outperforming state-of-the-art learning-based methods (Teal: 82.04%, Figret: 82.20%) and the clustering-based NCFlow (76.48%), while providing 3-4 orders of magnitude speedup compared to LP solvers on large-scale networks. The framework maintains robust performance under link failures and meets real-time scheduling requirements for production deployment. 
653 |a Mathematical programming 
653 |a Software 
653 |a Linear programming 
653 |a Wide area networks 
653 |a Network topologies 
653 |a Clustering 
653 |a Graph neural networks 
653 |a Neural networks 
653 |a Real time 
653 |a Optimization 
653 |a Production scheduling 
653 |a Traffic engineering 
653 |a Traffic control 
653 |a Topology 
653 |a Nodes 
653 |a State estimation 
653 |a Complexity 
653 |a Machine learning 
653 |a Graphical representations 
653 |a Fault tolerance 
653 |a Constraints 
700 1 |a Tang, Chaowei  |u Chongqing University, School of Microelectronics and Communication Engineering, Chongqing, China (GRID:grid.190737.b) (ISNI:0000 0001 0154 0904) 
700 1 |a Ma, Wenyu  |u Chongqing University, School of Microelectronics and Communication Engineering, Chongqing, China (GRID:grid.190737.b) (ISNI:0000 0001 0154 0904) 
700 1 |a Xing, Wenjuan  |u Chongqing University, School of Microelectronics and Communication Engineering, Chongqing, China (GRID:grid.190737.b) (ISNI:0000 0001 0154 0904); Beijing Research Institute, China Telecom Corporation Limited, Beijing, China (GRID:grid.506877.b) 
773 0 |t Journal of King Saud University. Computer and Information Sciences  |g vol. 37, no. 6 (Aug 2025), p. 119 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3257123389/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3257123389/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3257123389/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch