Using a Viscosity Matrix to Construct a Riemann Solver for the Equations of Special Relativistic Hydrodynamics

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Numerical Analysis and Applications vol. 18, no. 1 (Mar 2025), p. 67
المؤلف الرئيسي: Kulikov, I. M.
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3257136011
003 UK-CbPIL
022 |a 1995-4239 
022 |a 1995-4247 
024 7 |a 10.1134/S1995423925010069  |2 doi 
035 |a 3257136011 
045 2 |b d20250101  |b d20250331 
100 1 |a Kulikov, I. M.  |u Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia (GRID:grid.465353.2) (ISNI:0000 0000 9188 6409) 
245 1 |a Using a Viscosity Matrix to Construct a Riemann Solver for the Equations of Special Relativistic Hydrodynamics 
260 |b Springer Nature B.V.  |c Mar 2025 
513 |a Journal Article 
520 3 |a Traditionally, to solve the hydrodynamic equations a Godunov method is used whose main stage is the solution of a Riemann problem to compute the fluxes of conservative variables through the interfaces of adjacent cells. Most numerical Riemann solvers are based on partial or full spectral decompositions of the Jacobian matrix with respect to the spatial derivatives. However, when using complex hyperbolic models and various types of equations of state, even partial spectral decompositions are quite difficult to find analytically. Such hyperbolic systems include the equations of special relativistic magnetohydrodynamics. In this paper, a numerical Riemann solver is constructed by means of a viscosity matrix based on Chebyshev polynomials. This scheme does not require any information about the spectral decomposition of the Jacobian matrix, while considering all types of waves in its design. To reduce the dissipation of the numerical solution, a piecewise parabolic reconstruction of the physical variables is used. The behavior of the numerical method is studied by using some classical test problems. 
653 |a Velocity 
653 |a Relativistic effects 
653 |a Mathematical analysis 
653 |a Viscosity 
653 |a Hyperbolic systems 
653 |a Magnetohydrodynamics 
653 |a Equations of state 
653 |a Godunov method 
653 |a Magnetic fields 
653 |a Polynomials 
653 |a Chebyshev approximation 
653 |a Variables 
653 |a Jacobi matrix method 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Hydrodynamic equations 
653 |a Cauchy problems 
653 |a Numerical methods 
653 |a Fluid mechanics 
653 |a Jacobian matrix 
653 |a Riemann solver 
773 0 |t Numerical Analysis and Applications  |g vol. 18, no. 1 (Mar 2025), p. 67 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3257136011/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3257136011/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3257136011/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch